Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Finite element analysis of the vibratory characteristics of cylindrical shells conveying fluid

Zhang, Yong Liang and Reese, Jason M. and Gorman, Daniel G. (2002) Finite element analysis of the vibratory characteristics of cylindrical shells conveying fluid. Journal of Sound and Vibration, 191 (45). pp. 5207-5231. ISSN 0022-460X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A finite element formulation is developed to predict the vibration of cylindrical shells conveying fluid. The method is based on the three-dimensional theory of elasticity and the linearised Eulerian equations. The hydrodynamic pressure is derived from the condition for dynamic coupling of the fluid-structure and the Eulerian equation. The influence of initial stresses within the shell due to fluid pressure is taken into account. Predicted natural frequencies for fluid-shell systems in the radius-to-thickness ratio range of R/h=38.96-1624 are compared with published experimental results to validate the model, and are also compared with results obtained using other finite element models (based on the classical shell theory and potential flow theory) to demonstrate advantages and disadvantages in terms of accuracy. The effect of variation in flow velocities and hydrostatic pressures on the dynamic behaviour of fluid-conveying shells is examined, and the influence of supported conditions on the free vibration is also discussed.