Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Multi-model CFAR detection in FOliage PENetrating SAR images

Izzo, Alessio and Liguori, Marco and Clemente, Carmine and Galdi, Carmelo and Di Bisceglie, Maurizio and Soraghan, John J. (2017) Multi-model CFAR detection in FOliage PENetrating SAR images. IEEE Transactions on Aerospace and Electronic Systems, 53 (4). pp. 1769-1780. ISSN 0018-9251

[img]
Preview
Text (Izzo-etal-IEEETAES2017-Multi-model-CFAR-detection-in-FOPEN-SAR-images)
Izzo_etal_IEEETAES2017_Multi_model_CFAR_detection_in_FOPEN_SAR_images.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (1MB) | Preview

Abstract

A multi-model approach for Constant False Alarm Ratio (CFAR) detection of vehicles through foliage in FOliage PENetrating (FOPEN) SAR images is presented. Extreme value distributions and Location Scale properties are exploited to derive an adaptive CFAR approach that is able to cope with different forest densities. Performance analysis on real data is carried out to estimate the detection and false alarm probabilities in the presence of a ground truth.