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Abstract—In practical applications, multi-objective optimisa-
tion is one of the most challenging problems that engineers
face. For this, Pareto-optimality is the most widely adopted
concept, which is a set of optimal trade-offs between conflicting
objectives without committing to a recommendation for decision-
making. In this paper, a fast approach to Pareto-optimal solution
recommendation is developed. It recommends an optimal ranking
for decision-makers using a Pareto reliability index. Further,
a mean average precision and a mean standard deviation are
utilised to gauge the trend of the evolutionary process. A
multi-objective artificial wolf-pack algorithm is thus developed
to handle the multi-objective problem using a non-dominated
sorting method (MAWNS). This is tested in a case study, where
the MAWNS is employed as an optimiser for a widely adopted
standard test problem, ZDT6. The results show that the proposed
method works valuably for the multi-objective optimisations.

I. I NTRODUCTION

Real-world applications, such as structural optimisations of
space systems[1], parameters determination for financial mar-
ket quantitative modelling, Terahertz spectroscopic analysis for
drug or explosive mixture[2], and intelligent analysis for ‘Big
Data’ management, often imply multiple objectives. Thus,
people need to search for ‘trade-offs’, rather than a single
solution, which leads to the different solution of ‘optimality’
under the multi-objective situations. The most widely used
term is the notion of Pareto optimality [3], [4], [5].

A multi-objective optimisation problem could be written in
Equ. (1),

maximise :
zi (x) = [f1 (x) , f2 (x) , ∙ ∙ ∙ , fN (x)] ,
i = 1, 2, ∙ ∙ ∙ , N

(1)

Subject to the equality constraintsGi (x), as given in
equation (2),

Gi (x) = 0, i = 1, 2, ∙ ∙ ∙ ,M (2)

and the inequality constraintsHi (x), as given in equation
(3),

Hi (x) ≤ 0, i = 1, 2, ∙ ∙ ∙ , P (3)

where,N is the number of objective functions, the objective
functions zi <n → <; M is the number of the equality
constraints;P is the number of the inequality constraints;x
= [x1, x2, ∙ ∙ ∙ , xK ] is the decision variables vector,K is the
number of the variables.

All vectors satisfied equations (2) and (3) are named as the
set F, in which the particular set ofx∗ = [x∗1, x

∗
2, ∙ ∙ ∙ , x

∗
K ]

yields the optimum values of all the objectives. The vector
of decision variablesx∗ ∈ F is Pareto optimal if there is no
feasible vector of decision variablesx ∈ F which would in-
crease some criterion without causing a simultaneous decrease
in any other criterion. The vectorsx∗ corresponding to the
solutions included in the Pareto optimal set are called non-
dominated. The image of the Pareto optimal set under the
objective functions is called Pareto front[3], [4], [5].

There are some widely used algorithms to solve multi-
objective formulations, such as the non-dominated sort-
ing genetic algorithm (NSGA)[6], the niched-Pareto ge-
netic algorithm (NPGA)[7], the multi-objective genetic al-
gorithm (MOGA)[8], the strength Pareto evolutionary al-
gorithm (SPEA)[9], the strength Pareto evolutionary algo-
rithm 2 (SPEA2)[10], the Pareto archived evolution strategy
(PAES)[11], the nondominated sorting genetic algorithm II
(NSGA-II)[12], [13], the niched Pareto genetic algorithm
2 (NPGA2)[14], the Pareto envelope-based selection algo-
rithm (PESA)[15], the revised version of Pareto envelope-
based selection algorithm (PESA-II)[16], the micro-genetic
algorithm(μGA)[17], [18], the micro-genetic algorithm with
variable population size(VPμGA) [19] and the bat algorithm
for multi-objective optimisation [20], [21], etc.

Generally, an engineer can make trade-offs within this set
under practical requirements by focusing the set of Pareto
front choices, which provides a visualised demonstration of
the Pareto-optimal solution, but with an unclear indication
of optimal diversities for decision-making. In this paper, we
propose a fast approach of Pareto-optimal solution recommen-
dation (FPR) using the Pareto reliability index (PRI), which
provides users with a recommendation list of optimal ranking
and optimal trend indications with different risk tolerance.

Wolves are always regarded as one of the smartest animals



on Earth, and wolves are gregarious animals who mostly live
in packs - wolf-pack (WP). Inspired by the swarm intelligence
of the WP’s dynamic behaviours, a multi-objective artificial
wolf-pack algorithm (MAWPA) has been developed, which
can response quickly to the environmental changes and their
neighbours in the direction and speed, etc., the information of
their behaviours can be transferred to others and help them
move from one swarming configuration to another almost
as one unit. By borrowing this intelligence of the social
behaviours, the MAWPA is parallel and independent to the
initial values, and able to achieve a global optimum. In this
paper, the MAWPA is proposed to handle multi-objective
optimisations, which is employed for a standard test problem
ZDT6.

The remainder of this paper is organised as follow. Section
I introduces the background of this research work; Section
II defines the technical work-flow of MAWPA; Section III
describes the FPR technical roadmap; Section IV states the
normalisation for the fitness functions; Section V defines the
PRI factor; Section VI introduces two trend indices for the
evolutionary process; Section VII gives two case studies to
demonstrate the FPR method; Section VIII concludes this
paper.

II. M ULTI -OBJECTIVE ARTIFICIAL WOLF-PACK

ALGORITHM

Inspired by the swarm intelligence of the WP’s dynamic
behaviours, the MAWPA is an artificial intelligent algorithm
that firstly simulates the behaviour of an individual artificial
Wolf (AW) and constructs a WP. Each AW searches its
own local optimal solution and passes information to its
self-organised WP, and finally, achieves the global optimal
solution. The MAWPA work-flow is given in Fig. 1, which
includes 6 steps of operations: (1) initialisation; (2) behaviour
selection; (3) behaviour of scouting; (4) behaviour of calling;
(5) behaviour of besieging; (6) bulletin and (7) non-dominated
sorting using the non-dominated sorting genetic algorithm II
(NSGA-II)[13]. .

Initialisation: in this step, all the parameters will be ini-
tialised, and the programme is preparing itself for the next
steps.

Behaviour Selection: the behaviour selection step takes
‘Scouting’ as the default behaviour or initial behaviour for
each WP. According to the density of prey in this region, the
number of companion and the visual conditions.

Scouting: for a certain AW individualk, Sk = {s1, . . . , sM}
is its finite state set, there isM states that an AW can perform
in. Within the AW’s visual field, if the current state of this AW
is Si and the next state isSj , the AW moves fromSi to Sj
randomly and check the state updating conditions as stated
in Equations (4) and (5). As demonstrated in Fig. 2,rij =
‖Sj − Si‖ is the distance between theith and jth individual
AW. z = f(S) is the prey density for this AW, wherez is
the fitness function.δ is the iterate step,υ is the AW visual
constant.ε is the random moving factor.

Fig. 1. The workflow of multi-objective artificial wolf pack algorithm

Fig. 2. The state distance between theith andjth individual

Si+1 =






Si + ε ∙ δ ∙
Sj − Si
‖Sj − Si‖

if zj > zi

Si + ε ∙ δ otherwise

(4)

Sj = Si + ε ∙ υ (5)

Calling: suppose the number of this AW’s neighbours isγ,
the central state isSc, the prey density iszc = f(Sc) and
η is the crowd factor. Within its visual field (rij < υ), if the
zc/γ > ηzi andη ≥ 1, the AW implements the central state
driven step; otherwise, when thezc/γ ≤ ηzi or η = 1, the
AW will go on with the scouting behaviour, as expressed in
Equation (6).



Si+1 =






Si + ε ∙ δ ∙
Sc − Si
‖Sc − Si‖

if
zc
γ
> ηzi and η ≥ 1

(4)
zc
γ
≤ ηzi or η = 0

(6)
Besieging: when the AW’s companions reach “max” state

Smax with the numberγ within the neighbourhood, the prey
density reacheszmax at the mean time. As stated in Equation
(7), with the same conditions as Equation (6), the AW updates
its state in highest prey density region; otherwise, the AW will
go on with the searching behaviour, as expressed in Equation
(6).

Si+1 =






Si + ε ∙ δ ∙
Smax − Si
‖Smax − Si‖

if
zmax
γ
> ηzi and η ≥ 1

(4)
zmax
γ
≤ ηzi or η = 0

(7)
Bulletin: the bulletin operation is a step to compare each

AW’s current stateSi with the historical state data, the bulletin
data will be replaced and updated only when the current state
is better than the last one, as described by Equation (8).

Sj+1 =






Sj if zj > zi

Si otherwise
(8)

A “max-generation” of simulation is employed as the ter-
minal condition of the MAWPA programme, which is one of
the widely used criteria for optimisation.

III. FAST APPROACH OFPARETO-OPTIMAL SOLUTION

RECOMMENDATION

As shown in Fig. 3, the flow chart of the fast approach
of Pareto-optimal solution recommendation is divided into 6
steps:
• step 1, initialise parameters and start the optimisation

process;
• step 2, perform optimisation using multi-objective algo-

rithms;
• step 3, Pareto-optimal solutions generation;
• step 4, the PRI assessment block;
• step 5, check optimisation termination conditions;
• step 6, end the programme and post-calculation process.
As can be seen from Fig. 3, there are 4 sub-steps in the

FPR assessment block in step 4,
• sub-step 1, normalisation for the multi-objective fitness

functions of the Pareto-optimal solutions;
• sub-step 2, the PRI indexβ1 calculation;
• sub-step 3, calculation of the evolutionary trend indices,

the mean average precision(mAP) and the mean standard
deviation(mSTD);

• sub-step 4, visualisation of Pareto front and evolutionary
trend indices;

Fig. 3. Work-flow of the fast approach of Pareto-optimal solution recommen-
dation [22]

IV. N ORMALISATION

The normalisation process is to map variables from their
original value range to a normalised value range, e.g.[0, 1], by
two operations ofscaleand shift[23]. As defined in equation
(1), the vector of objective functionszi with the values
[f1 (x) , f2 (x) , ∙ ∙ ∙ , fN (x)] is the original data source to the
normalisation block, in whichfi ∈ [fmin, fmax].

Firstly, as given in equation (9), thescaleoperation calcu-
lates the scale factor according to the input range[fmin, fmax]
of the original datafi, and then all the input data are scaled
to the range of[cl, cu]. That is, the fitness values are mapped
from the practical value range[fmin, fmax] to the normalised
value range[cl, cu], which are[0, 1] in this context.

fic = (cu − cl)×
fi − fmin
fmax − fmin

(9)

Then, in theshift operation, the scaled datafic are shifted to
the new range of[cl, cu], as given in equation (10), wherefih
is the normalised fitness objectives.

fih = cl + fic (10)

V. PARETO RELIABILITY INDEX FOR PARETO SOLUTIONS

The Pareto reliability index (β1) is defined in equation
(11), whereμf is the mean andσf is the standard deviation
of the normalised objectives, as given in equations (12) and
(13) respectively.Wi is the weighted normalised objectives in
equation (14),wi is the weight factor as given in equation (15),



which balances the weight of all the normalised objectives,
wi∈[0,1].

β1 =
μf

σf
(11)

μf =

∑N
i Wi

N
(12)

σ2f =

∑N
i (Wi − μf )

2

N − 1
(13)

Wi = wi ∙ fih (14)

N∑

i

wi = 1 (15)

Fig. 4. Pareto Reliability Index[22]

As shown in Fig. 4, without loss of generality, a case of
two objectivesf1 and f2 is utilised to present the definition
of β1. Fig. 4 shows a geometrical illustration of theβ1 index
in a dual-objective case, which indicates the distance of the
mean margin of a multi-criteria range. The idea behind the
β1 is that the distance from location measureμf to the limit
statesσf which provides a good measure of the reliability of
the Pareto solutions, that is, a larger value ofβ1 leads to a
better solution.

VI. T REND INDICES

In this section, a factor of mAP and a factor of mSTD are
introduced as the trend indices for the optimisation process,
which are defined in equations (16) and (17).

As shown in Fig. 5, the solid curve is the mAP scores for
each vectorfj as given in equation (16) and the dashed curves
are the mAP± mSTD for each vectorfj as given in equation
(17), in whichp is the population of the data set,AVG(∙) is
the average function andVAR(∙) is the variance function.

mAP(fj) =
1

p

p∑

j=1

(AVG(fj)) (16)

mSTD(fj) =
1

p

p∑

j=1

(√
VAR(fj)

)

(17)

Fig. 5. The diagram of mAP± mSTD over the full generations[22]

VII. C ASE STUDY

As given by equation (18), a standard test problem ZDT6
[24] is solved by NSGA-II implemented in the MAT-
LAB toolboxesSGALAB [19], [25], Swarmwolf [26] and
SECFLAB[27], in which xi ∈ [0,1], n = 10 in this context.






f1(x) = 1− exp (−4x1) sin
6 (6πx1)

f2(x) = g(x)

[

1−

(
f1(x)

g(x)

)2]

g(x) = 1 + 9







n∑

i=2

xi

n− 1







0.25

(18)

The parameters for the case are listed in Table I, in which
a max-generation 200 is the termination condition of each
round test; the total test number is 10; the population is
30, tournament selection operator, binary encoding/decoding
method, single point crossover and mutation operators with
pc = 0.8 andpm = 0.01 respectively.

TABLE I
PARAMETERS FORMAWNS OPTIMISATION

multi-objective algorithm NSGA-II
max-generation 200
crossover probability (pc) 0.8
mutation probability (pm) 0.01
population 60
test-number 10
selection operator tournament
crossover operator single point
mutation operator single point
encoding/decoding method binary

PN non-replaceable population 50
PR replaceable population 10
δ iterate step 0.5
υ visual 2.5
η crowd 0.618

try number 5

Figs. 6 and 7 are the mAP± mSTD diagrams forf1 and
f2 over the full simulation generations, which indicate that a



better solution off1 can be optimised without worsening a
solution off2, which is not dominated by any other solution
in the search space. As can be seen in Fig. 6, thef1’s mAP±
mSTD curves go up quickly from generation = 1 to 8, when
they reach a stable status with a minor fluctuation at generation
= 10 and last to the end of simulation. Fig. 7 shows thef2’s
mAP± mSTD curves have a similar shape of generation = 1
to 8, and they have a second jump from generation = 100 to
130 and then keep stale to the end of simulation.

As shown in Table II, the recommended solutions are listed
by the solution number in the column ‘SOLUTION No.’ with a
descending rank (RANK = 1 is the most recommended) using
the values ofβ1.

TABLE II
SOLUTIONS RECOMMENDATION FOR THEZDT6 TEST PROBLEM

RANK SOLUTION No. β1
1 41 2.25e15
2 43 2.25e15
3 43 2.25e15
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
21 218 6.83
22 219 6.83
23 220 6.83
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
44 15 4.63
45 16 4.63
46 17 4.63
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
300 270 0.499
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Fig. 6. f1’s mAP± mSTD over the full generations

VIII. C ONCLUSIONS AND FUTURE WORKS

Using the newly defined index ofβ1, a fast approach to
Pareto-optimal solutions recommendation has been developed,
thereby providing a ranking list of Pareto-optimal solutions
for the decision-making. The evolutionary trends are gauged

20 40 60 80 100 120 140 160 180 200
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0.84

0.86

0.88

0.9

0.92

0.94

fitness 2 mAP ± mSTD - generation

generation

fit
ne

ss
 2

Fig. 7. f2’s mAP± mSTD over the full generations

via the indices of mAP± mSTD with variable uncertainty
tolerances.

The contributions of this paper includes: (1) the inclusion of
the dynamic behaviours of trend indices of mAP and mSTD;
(2) the development of a fast Pareto-optimality solution rec-
ommendation method, FPR; (3) the Pareto reliability indexβ1
or PRI to rank the uncertainties of Pareto-optimal solutions,
and a clear recommendation list for decision-making; (4)
a multi-objective artificial wolf-pack swarm algorithm using
non-dominated sorting method, MAWNS.

Further work aims at industrial applications,including the
multi-objective optimisations for robotic systems, such as ex-
oskeleton, robotic space tethers, humanoid robot and industrial
robotics. Further, it will be applied to decision processes for
computational intelligence aided design [28][29].
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