Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Calibration-free WMS using a cw-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in-situ real-time laser parameter characterization

Upadhyay, Abhishek and Wilson, David and Lengden, Michael and Chakraborty, Arup L. and Stewart, George and Johnstone, Walter (2017) Calibration-free WMS using a cw-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in-situ real-time laser parameter characterization. IEEE Photonics Journal, 9 (2). ISSN 1943-0655

Text (Upadhyay-etal-IEEEPJ2017-Demonstration-of-calibration-free-WMS-measurement-of-gas-parameters)
Upadhyay_etal_IEEEPJ2017_Demonstration_of_calibration_free_WMS_measurement_of_gas_parameters.pdf - Accepted Author Manuscript

Download (748kB) | Preview


This paper presents a detailed experimental wavelength modulation spectroscopy approach and demonstrates its applicability to various types of semiconductor lasers in the near infrared and mid-infrared. A 5250 nm continuous-wave distributed feedback quantum cascade laser, a 2004 nm vertical cavity surface emitting laser, and a 1650 nm distributed feedback edge-emitting laser are used to extract the concentration and pressure values of nitric oxide, carbon dioxide, and methane, respectively, using the 2f wavelength modulation spectroscopy (WMS) technique under controlled conditions. The generality of the technique is demonstrated by extending it to 3f WMS for the three different kinds of lasers used in this study. The methodology required to provide in-situ real-time measurements of both gas parameters and operating characteristics of the laser are described in detail. Finally, the advantages and limitations of the technique are discussed in view of the fact that the characteristic behavior of the laser sources is significantly different. We specifically discuss the issue of targeting non-absorbing wavelength regions and the choice of modulation frequency and modulation amplitude of the laser, as well as the choice of the detection harmonic.