Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Some aspects of the mechanism of formation of smoke from the combustion of wood

Atiku, Farooq and Lea-Langton, Amanda and Bartle, Keith and Jones, Jenny and Williams, Alan and Burns, Iain and Humphries, Gordon Samuel (2017) Some aspects of the mechanism of formation of smoke from the combustion of wood. Energy and Fuels. ISSN 0887-0624 (In Press)

[img] Text (Atiku-etal-EF-2017-Some-aspects-of-the-mechanism-of-formination-of-smoke)
Atiku_etal_EF_2017_Some_aspects_of_the_mechanism_of_formination_of_smoke.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 16 January 2018.

Download (2MB) | Request a copy from the Strathclyde author

Abstract

This paper is concerned with an investigation of the formation of soot from the combustion of some of the primary pyrolysis products formed during pine wood combustion. Comparisons are made between the combustion products of model compounds, furfural for cellulose, eugenol and anisole to represent lignin (and n-decane for comparison) with the smoke emissions from the previously studied combustion of pine wood. These compounds were burned in a diffusion flame burner and the appearance and composition of the resulting particulate and the adsorbed polynuclear aromatic hydrocarbon (PAH) precursors were studied by TEM, mass spectrometry and Py-GC-MS. The reactions leading to soot formation were modelled. It was concluded that wood soot formation proceeded via pyrolytic breakdown followed by a mechanism based on HACA (hydrogen abstraction carbon addition) reactions with the participation of cyclopentadienyl intermediates, while eugenol soot originated predominantly through the CPDyl route. The formation of furfural soot is mainly via HACA.