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LARGE DEVIATIONS FOR A CLASS OF SEMILINEAR

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

MOHAMMUD FOONDUN AND LEILA SETAYESHGAR

Abstract. We prove the large deviations principle (LDP) for the law of
the solutions to a class of semilinear stochastic partial differential equations

driven by multiplicative noise. Our proof is based on the weak convergence
approach and significantly improves earlier methods.

1. Introduction

We consider a family of semilinear stochastic partial differential equations,

∂U ǫ

∂t
(t, x) =

∂2U ǫ

∂x2
(t, x) +

√
ǫσ(t, x, U ǫ(t, x))

∂2W

∂t∂x
(t, x)

+
∂

∂x
g(t, x, U ǫ(t, x)) + f(t, x, U ǫ(t, x)), (1.1)

with U ǫ(t, 0) = U ǫ(t, 1) = 0 for t ∈ [0, T ], and initial condition U ǫ(0, x) = η(x) ∈
L2([0, 1]). W (t, x) denotes the Brownian sheet [3] on a filtered a probability space,
(Ω,F , {Ft}, P ). The functions f = f(t, x, r), g = g(t, x, r), σ = σ(t, x, r) are
Borel functions of (t, x, r) ∈ R+ × [0, 1] × R. Linear growth on f , and quadratic
growth on g are assumed. Therefore, our family of semilinear equations contains,
as special cases, both the stochastic Burgers’ equation, and the stochastic reaction-
diffusion equation. The existence and uniqueness to Eq. (1.1) has been studied
by Gyöngy [12] (1998), where the existence and uniqueness results of Bertini et al.
[1] (1994), Da Prato et al. [6] (1995), and Da Prato and Gatarek [7] (1995), have
been generalized. Our aim is to prove the large deviation principle (LDP) for the
law of the solutions to Eq. (1.1) by employing the weak convergence approach.
Our result generalizes the LDP for the stochastic Burgers’ equation studied by
Setayeshgar [13] (2014). We state the precise statement of the large deviation
principle below.

Definition 1.1 (Large Deviation Principle). Let I : E → [0,∞] be a rate function
on a Polish space E . This means that for each M < ∞, the level set {x ∈ E :
I(x) ≤ M} is compact in E . The sequence of random variables {Xǫ} satisfies the
large deviation principle on E with rate function I if
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(1) For each closed subset F ⊂ E ,
lim sup

ǫ→0
ǫ logP (Xǫ ∈ F ) ≤ − inf

x∈F
I(x).

(2) For each open subset G ⊂ E ,
lim inf
ǫ→0

ǫ logP (Xǫ ∈ G) ≥ − inf
x∈G

I(x).

The Freidlin-Wentzell theory [11], describes the asymptotic behavior of prob-
abilities of the large deviations of the law of the solutions to a family of small
noise finite dimensional SDEs, away from its law of large number limit. Here,
we deal with the case where the driving Brownian motion is infinite dimensional.
In [4], Budhiraja et al. (2008) use certain variational representations for infinite
dimensional Brownian motions [3] (originating from the work of Boué and Dupuis
[2] (1998)) and demonstrate that, these representations provide a framework for
proving large deviations for a variety of infinite dimensional systems, such as sto-
chastic partial differentials equations. One of the advantages of their method is
that the technical exponential probability estimates usually used in proofs based
on approximations, are no longer needed; instead, one is required to prove certain
qualitative properties of the SPDE under study.

The following is the main contribution of this paper which establishes the large
deviation principle for the law of the solutions to Eq. (1.1).

Theorem 1.2 (Main Theorem). The processes {U ǫ(t) : t ∈ [0, T ]} satisfy the large
deviation principle on C

(
[0, T ];L2([0, 1])

)
with rate function Iη given by (3.8).

The precise definition of the rate function is deferred to section 3. Large devia-
tions principle for Eq. (1.1) has been studied by C. Cardon Weber [5] (1997), using
the classical approach. The proof that we offer is totally different and is based on
the weak convergence approach. In this approach one proves the Laplace princi-
ple which is equivalent to the large deviation principle for Polish space random
elements [8].

Definition 1.3 (Laplace Principle). The sequence {Xn, n ∈ N} on a Polish space
E is said to satisfy the Laplace principle with rate function I if for all bounded
continuous functions mapping E into R

limn→∞
1

n
logE{exp[−nh(Xn)]} = −infx∈E{h(x) + I(x)}.

In the weak convergence approach which is suitable for the evaluation of inte-
grals appearing in the Laplace principle, the integrals are associated to a varia-
tional representation through a family of minimal cost functions. The asymptotic
behavior of these minimal cost functions are in turn determined by the weak con-
vergence approach [8]. Finally, we note that compared to the proof of C. Cardon
Weber [5] (1997), the conditions require less technicalities. For instance, the time
discretizations required in proving the regularity of the skeleton are avoided, and
exponential inequalities for the stochastic integral in Hölder norms are no longer
needed. These are usually the most difficult parts of large deviations analysis
based on the standard approximation method.
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In our proof based on the weak convergence approach, one only needs to es-
tablish the well-posedness of the controlled process, and its convergence to the
limiting equation. This results in a shorter, and more straightforward proof than
that of C. Cardon Weber [5] (1997).

We now give an outline of the paper. In Section 2, we state some assumptions
and give some preliminary information. The existence and uniqueness results for
the family of semilinear SPDEs is also stated in this section. In Section 3, we
state the large deviations theorem due to Budhiraja et al. ([4, Theorem 7]) which
we exploit. We subsequently introduce the controlled and limiting equations, and
establish their existence and uniqueness. Section 4 is devoted to the proof of the
main theorem. As noted before, establishing the large deviations principle hinges
on proving the tightness and convergence properties of the controlled process. This
is carried out in Theorem 4.2. Unless otherwise noted, we adopt the following
notation throughout the paper: The notation “

.
= ” means by definition. C

denotes a free constant which may take on different values, and depend upon
other parameters. We use the notation |h|p to denote the Lp([0, 1])-norm of a
function h defined on [0, 1].

2. Main Assumptions and Preliminaries

In this Section we introduce some assumptions and preliminaries which are needed
for the formulation of the problem. The functions f = f(t, x, r), g = g(t, x, r),
σ = σ(t, x, r) are Borel functions of (t, x, r) ∈ R+× [0, 1]×R and have the following
assumptions:

(H1) There exists a constant K > 0 such that for all (t, x, r) ∈ [0, T ]× [0, 1]× R

we have supt∈[0,T ] supx∈[0,1] |f(t, x, r)| ≤ K(1 + |r|).
(H2) The function g is of the g(t, x, r) = g1(t, x, r) + g2(t, r), where g1 and g2 are

Borel functions satisfying

|g1(t, x, r)| ≤ K(1 + |r|) and |g2(t, r)| ≤ K(1 + |r|2).
(H3) σ is bounded and for every T ≥ 0 there exists a constant L such that for

(t, x, p, q) ∈ [0, T ] × [0, 1] × R
2 we have |σ(t, x, p) − σ(t, x, q)| ≤ L|p − q|.

Furthermore, f and g are locally Lipschitz with linearly growing Lipschitz
constant, i.e.,

|f(t, x, p)− f(t, x, q)| ≤ L(1 + |p|+ |q|)|p− q|
|g(t, x, p)− g(t, x, q)| ≤ L(1 + |p|+ |q|)|p− q|.

Definition 2.1 (Mild Solution). A random field U ǫ .
= {U ǫ(t, x) : t ∈ [0, T ], x ∈

[0, 1]} is called a mild solution of (1.1) with initial condition η if (t, x) → U ǫ(t, x)
is continuous a.s., and U ǫ(t, x) is {Ft}-measurable for any t ∈ [0, T ], and x ∈ [0, 1],
and if

U ǫ(t, x) =

∫ 1

0

Gt(x, y)η(y)dy +
√
ǫ

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, U(s))(y)W (dy, ds)

−
∫ t

0

∫ 1

0

∂yGt−s(x, y)g(s, U(s))(y)dyds+

∫ t

0

∫ 1

0

Gt−s(x, y)f(s, U(s))(y)dyds.
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The function Gt(., .) is the Green kernel associated with the heat operator ∂/∂t−
∂2/∂2x with Dirichlet’s boundary conditions. The following result of Gyöngy ([12,
Theorem 2.1]) asserts the existence and uniqueness of a solution to (1.1).

Theorem 2.2 (Existence and Uniqueness of Solution Mapping). For any filtered
probability space (Ω,F , P, {Ft}), with a Brownian sheet defined as before, and
η ∈ Lp[0, 1], p ≥ 2 there exists a measurable function

ξǫ : L2([0, 1])× C([0, T ]× [0, 1];R) → C
(
[0, T ];Lp([0, 1])

)
,

such that U ǫ .
= ξǫ(η,

√
ǫW ), (with η denoting the initial condition) is the unique,

mild solution of (1.1).

We now state some estimates on the Dirichlet heat kernel. The proofs are well
known and are omitted.

2.1. Estimates on the Heat Kernel. There exist positive constants K, a, b, d
such that for all 0 ≤ s < t ≤ T , and x, y ∈ [0, 1].

(1) |G(s, t;x, y)| ≤ K 1
|t−s| exp

(
− a |x−y|2

t−s

)
,

(2) | ∂
∂xG(s, t;x, y)| ≤ K 1

|t−s|3/2
exp

(
− b |x−y|2

t−s

)
,

(3) | ∂∂tG(s, t;x, y)| ≤ K 1
|t−s|2 exp

(
− d |x−y|2

t−s

)
.

For ᾱ = γ−d
2γ with γ ∈ (d,∞), and any α < ᾱ there exists a constant K̄(α) such

that for all 0 < s < t < T , and all x, y ∈ [0, 1].

(4)
∫ T

0

∫ 1

0
|Gt−τ −Gs−τ |2dηdτ ≤ K̄(α)ρ((t, x), (s, y))2α

where ρ is the Euclidean distance in [0, T ]× [0, 1].

3. Framework for the Uniform Laplace Principle

In this section, we review some of the results presented in [4]. In particular,
we state Theorem 3.1 which asserts the uniform Laplace principle for a family of
functionals of a Brownian sheet under two main assumptions. In subsection 3.1,
we state the two assumptions for the class of semilinear SPDEs under study, and
employ Theorem 3.1 to show the uniform Laplace principle.

3.1. Uniform Laplace Principle for Functionals of a Brownian Sheet.
Let (Ω,F , P, {Ft}) be the filtered probability space introduced as before, and
ψ : Ω × [0, T ] → L2([0, 1]) an L2([0, 1])-valued predictable process. Let E0 and E
be Polish spaces, and let the initial condition η take values in a compact subspace
of E0. Moreover, for every ε > 0, let ξε : E0 × C([0, T ]× [0, 1];R) → E be a family
of measurable maps. Define Xε,η .

= ξε(η,
√
εW ), and introduce the following:

SN .
=

{
ψ ∈ L2([0, T ]× [0, 1]) :

∫

[0,T ]×[0,1]

ψ2(s, y)dsdy ≤ N

}
, N ∈ N, (3.1)

SN is a compact metric space, equipped with the weak topology on L2([0, T ] ×
[0, 1]). For v ∈ L2([0, T ]× [0, 1]), define
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P2
.
=

{
ψ :

∫ T

0

|ψ(s)|22ds <∞ a.s.

}
. (3.2)

PN
2

.
=

{
v ∈ P2 : v(ω) ∈ SN , P − a.s.

}
. (3.3)

P2 is the space of controls. By Girsonov’s theorem the process

Ŵ (t) =W (t) + ǫ−1/2

∫ t

0

v(s)ds,

is a cylindrical Wiener process under the measure Qv,ǫ defined by

dQv,ǫ

dP

.
= exp

{
− 1√

ǫ

∫ T

0

∫ 1

0

v(s, y)W (dyds)− 1

2ǫ

∫ T

0

∫ 1

0

v2(s, y)dyds

}
.

For convenience, define

Int(v)(t, x)
.
=

∫ t

0

∫ x

0

v(s, y)dsdy. (3.4)

The following condition is the standing assumption of Theorem 3.1 which states
the uniform Laplace principle for the family {Xε,η}.
CONDITION: There exists a measurable map ξ0 : E0 × C([0, T ]× [0, 1];R) → E
such that

(A1) For every M <∞ and compact set K ⊂ E0, the set

ΓM,K
.
= {ξ0(η, Int(v)) : v ∈ SM , η ∈ K},

is a compact subset of E .
(A2) Consider M < ∞ and the families {vǫ} ⊂ PM

2 , and {ηǫ} ⊂ E0 such that
vǫ → v, and ηǫ → η in distribution, as ε→ 0. Then

ξε
(
ηǫ,

√
εW + Int(vε)

)
→ ξ0

(
η, Int(v)

)
,

in distribution as ǫ→ 0.

For h ∈ E , and η ∈ E0, define the rate function

Iη(h)
.
= inf

{v∈L2([0,T ]×[0,1]):h
.
=ξ0(η,Int(v))}

{
1

2

∫ T

0

∫ 1

0

v2(y, s)dyds

}
. (3.5)

The following theorem is due to Budhiraja et al. ([4], Theorem 7), and states the
uniform Laplace principle for the family {Xε,η}.
Theorem 3.1. Let ξ0 : E0×C([0, T ]×[0, 1];R)→ E be a measurable map satisfying
conditions (A1) and (A2). Suppose that for all h ∈ E, η → Iη(h) is a lower semi-
continuous map from E0 to [0,∞]. Then for every η ∈ E0, Iη(h) : E → [0,∞],
is a rate function on E and the family {Iη, η ∈ E} of rate functions has compact
level sets on compacts. Furthermore, the family {Xε,η} satisfies the the uniform
Laplace principle on E with rate function Iη, uniformly in η on compact subsets of
E0.



6 MOHAMMUD FOONDUN AND LEILA SETAYESHGAR

3.2. The Controlled and Limiting Equations for the Semilinear SPDE.
In the context of the semilinear SPDE under study, E0 = L2([0, 1]) is the space of
the initial condition, and E = C([0, T ];L2([0, 1])), the space of the solutions. The
solution map of Eq. (1.1) is U ǫ = ξǫ(η,

√
ǫW ). V ǫ,v

η = ξǫ(η,
√
ǫW + Int(v)) is the

solution map of the stochastic controlled equation for the semilinear SPDE,

∂V ǫ

∂t
(t, x) =

∂2V ǫ

∂x2
(t, x) +

√
ǫσ(t, x, V ǫ(t, x))

∂2W

∂t∂x
(t, x) +

∂

∂x
g(t, x, V ǫ(t, x))

+ f(t, x, V ǫ(t, x)) + σ(t, x, V ǫ(t, x))v(t, x), (3.6)

whose mild solution is

V ǫ,v
η (t, x) =

∫ 1

0

Gt(x, y)η(y)dy +
√
ǫ

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
ǫ,v
η (s))(y)W (dy, ds)

−
∫ t

0

∫ 1

0

∂yGt−s(x, y)g(s, V
ǫ,v
η (s))(y)dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)f(s, V
ǫ,v
η (s))(y)dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
ǫ,v
η (s))(y)v(s, y)dyds, (3.7)

We refer to Eq. (3.7) as the controlled process (i.e. the equation under the change
of measure). The map V 0,v

η = ξ0(η, Int(v) is the solution map of the limiting
zero-noise equation, whose mild solution is

V 0,v
η (t, x) =

∫ 1

0

Gt(x, y)η(y)dy +

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
0,v
η (s))(y)v(s, y)dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)f(s, V
0,v
η (s))(y)dyds

−
∫ t

0

∫ 1

0

∂yGt−s(x, y)g(s, V
0,v
η (s))(y)dyds.

We have the following existence and uniqueness result for the controlled process
(3.7), where the main ingredient of the proof is Girsonov’s theorem.

Theorem 3.2 (Existence and Uniqueness of Controlled Process). Let ξǫ denote
the solution mapping, and let v ∈ PN

2 for some N ∈ N. For ǫ > 0 and η ∈ L2([0, 1])
define

V ǫ,v
ξ

.
= ξǫ

(
η,
√
ǫW + Int(v)

)
,

then V ǫ,v
η is the unique solution of equation (3.7).

Proof. For a fixed v ∈ PN
2 , define

dQv,ǫ

dP

.
= exp

{
− 1√

ǫ

∫ T

0

∫ 1

0

v(s, y)W (dyds)− 1

2ǫ

∫ T

0

∫ 1

0

v2(s, y)dyds

}
.

Since
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exp

{
− 1√

ǫ

∫ T

0

∫ 1

0

v(s, y)W (dyds)− 1

2ǫ

∫ T

0

∫ 1

0

v2(s, y)dyds

}
,

is an exponential martingale, we have that Qv,ǫ is a probability measure on
(Ω,F , P, {Ft}). Obviously, Qv,ǫ is equivalent to P . By Girsanov’s theorem ([10],

Theorem 10.14 ), Ŵ
.
= W + ǫ−1/2Int(u) is a Brownian sheet under Qv,ǫ. By

Theorem 2.2, V ǫ,v
ξ is the unique solution of (1.1) with Ŵ replaced by W under

the measure Qv,ǫ. This is precisely equation (3.7) on (Ω,F , Qǫ,v, {Ft}). By the
equivalence of the measures, V ǫ,v

η is the unique solution of Eq. (3.7) under the
measure P , and the proof is complete. �

For h ∈ C
(
[0, T ];L2([0, 1])

)
, we define the following action functional

Iη(h)
.
= inf

v

∫ T

0

∫ 1

0

v2(s, y)dyds, (3.8)

where the infimum is taken over all v ∈ L2([0, T ]× [0, 1]) such that

h(t, x) =

∫ 1

0

Gt(x, y)η(y)dy −
∫ t

0

∫ 1

0

∂yGt−s(x, y)g(s, h(s))(y)dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)f(s, h(s))(y)dyds +

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, h(s))v(s, y)dyds.

(3.9)

The next Theorem asserts the existence and uniqueness of the limiting equation
which we will use in the proof of Theorem 4.2.

Theorem 3.3 (Existence and Uniqueness of Limiting Eqn). Fix η ∈ L2([0, 1]) and
v ∈ L2([0, T ]× [0, 1]). Then there exists a unique function h ∈ C

(
[0, T ];L2([0, 1])

)

which satisfies equation (3.9).

The proof of this Theorem is very similar to that of Theorem 2.2, and thus omitted.
We now state two Theorems and two Lemmas which we are going to use in the
proof of the main Theorem. The next Lemma ([12, Lemma 3.3]) is used in proving
the tightness of the second and third terms of the controlled process (4.1).

Lemma 3.4. Let ρ ∈ [1,∞), and q ∈ [1, ρ). Moreover, let ζn(t, y) be a sequence
of random fields on [0, T ] × [0, 1] such that supt≤T |ζn(t, .)|q ≤ θn, where θn is a
finite random variable for every n. Assume that the sequence θn is bounded in
probability, i.e.

lim
c→∞

sup
n
P (θn ≥ C) = 0.

Then the sequence J(ζn)
.
=

∫ t

0

∫ 1

0 R(r, t;x, y)ζn(r, y)dydr, t ∈ [0, T ], x ∈ [0, 1]
where R(r, t;x, y) = ∂yG(r, t;x, y) or R(r, t;x, y) = G(r, t;x, y) is uniformly tight
in C

(
[0, T ];Lρ([0, 1])

)
.
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4. The Main Theorem

We now announce the main theorem of this paper.

Theorem 4.1 (Main Theorem). The processes {U ǫ(t) : t ∈ [0, T ]} satisfy the
uniform Laplace principle on C

(
[0, T ];L2([0, 1])

)
with rate function Iη given by

(3.8).

In view of Theorem 3.8, it suffices to verify conditions (A1) and (A2). Let β :
[0, 1) → [0, 1) be a measurable map such that β(r) → β(0) = 0 as r → 0.

4.1. Verification of Condition (A2). Condition (A2) follows by applying the
following theorem with β(r) = r, r ∈ [0, 1).

Theorem 4.2 (Convergence of the Controlled Process). Let M <∞, and suppose

that ηǫ → η and vǫ → v in distribution as ǫ→ 0 with {vǫ} ⊂ PM
2 . Then V

β(ǫ),vǫ

ηǫ →
V 0,u
η in distribution.

Proof. Note that

V β(ǫ),vǫ

η (t, x) =

∫ 1

0

Gt(x, y)η
ǫ(y)dy

+
√
β(ǫ)

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
β(ǫ),vǫ

ηǫ (s))(y)W (dy, ds)

−
∫ t

0

∫ 1

0

∂yGt−s(x, y)g(s, V
β(ǫ),vǫ

ηǫ (s))(y)dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)f(s, V
β(ǫ),vǫ

ηǫ (s))(y)dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
β(ǫ),vǫ

ηǫ (s))(y)vǫ(s, y)dyds

.
= Jǫ

1 + Jǫ
2 + Jǫ

3 + Jǫ
4 + Jǫ

5 (4.1)

We show tightness of Jǫ
i for i = 1, 2, 3, 4, 5 in C

(
[0, T ];L2([0, 1])

)
, and therefore

assert the claim. Since ηǫ ∈ L2([0, 1]), the tightness of Jǫ
1 follows by the following

lemma.

Lemma 4.3. Let η ∈ L2([0, 1]). Then (t → Gtη) belongs to C
(
[0, T ];L2([0, 1])

)
,

and

η → {t→ Gtη},
is a continuous map in η.

As for the tightness of Jǫ
5 , we have

sup
ǫ∈(0,1)

Jǫ
5
.
= sup

ǫ∈(0,1)

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
β(ǫ),vǫ

ηǫ (s))(y)vǫ(y, s)dyds

≤M

(∫ t

0

∫ 1

0

G2
t−s(x, y)dyds

)1/2

sup
ǫ∈(0,1)

(∫ 1

0

∫ t

0

(vǫ)2dyds

)1/2

≤ C(T ),

(4.2)
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where Hölder’s inequality, boundedness of σ, properties of the regularizing kernel,
and boundedness of the controls in L2([0, T ]× [0, 1]) have been used. This estab-
lishes the tightness of Jǫ

5 . As for the tightness of Jǫ
4 , we mainly use Lemma 3.4.

Note that f satisfies the linear growth condition:

sup
t∈[0,T ]

sup
x∈[0,1]

|f(t, x, r)| ≤ K(1 + |r|).

In Lemma 3.4, let ρ = 2, q = 1, and ζǫ(s, y)
.
= f(s, y, V

β(ǫ),vǫ

ηǫ (s, y)). We have

sup
t∈[0,T ]

|f(s, V β(ǫ),vǫ

ηǫ (s))|1 ≤ K +K sup
t∈[0,T ]

|V ǫ,vǫ

ηǫ (s)|2

Let θǫ
.
= K +K supt∈[0,T ] |V

β(ǫ),vǫ

ηǫ (s)|2. We have

lim
C→∞

sup
ǫ
P (K +K sup

t∈[0,T ]

|V β(ǫ),vǫ

ηǫ (s)|2 ≥ C) < lim
C→∞

sup
ǫ
P (K ≥ C

2
)

+ lim
C→∞

sup
ǫ
P ( sup

t∈[0,T ]

|V β(ǫ),vǫ

ηǫ (s)|2 ≥ C

2
)

Clearly the first term on the R.H.S. of the immediate above display in equal to
zero. As for the second term, it suffices to show that

sup
t≤T

|V β(ǫ),vǫ

ηǫ (t, .)|2,

is bounded in probability, i.e.

lim
C→∞

sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),uǫ

ξǫ (t, .)|2 ≥ C
)
= 0. (4.3)

The proof of (4.3) is similar to that in [13] but we include it here for the convenience
of the reader. Recall the class of stochastic semi-linear equations (1.1) which we
rewrite here

∂uǫ

∂t
(t, x) =

∂2uǫ

∂x2
(t, x) +

√
ǫσ(t, x, uǫ(t, x))

∂2W

∂t∂x
(t, x)

+
∂

∂x
g(t, x, uǫ(t, x)) + f(t, x, uǫ(t, x)), (4.4)

Note that the controlled equation (3.6) can be recovered from the above equation.
In [12], Gyöngy (1998) proves the existence and uniqueness of the solutions to the
above class of stochastic semi-linear equations, by an approximation procedure.
Let fn(t, x, r), and gn(t, x, r) be sequences of bounded measurable functions such
that they are globally Lipschitz in r ∈ R, and fn

.
= f , gn

.
= g for |r| ≤ n,

fn = gn
.
= 0 for |r| ≥ n + 1. fn, and gn satisfy the same growth conditions as

f , and g. We have, by ([12, Proposition 4.7]), that there exists a unique solution,

say V
β(ǫ),vǫ

ηǫ,n , to the semi-linear equation (1.1) with f and g replaced by fn and gn.

That is, V
β(ǫ),vǫ

ηǫ,n , is the unique solution to the truncated equation. Furthermore,
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V
β(ǫ),vǫ

ηǫ,n converges to V
β(ǫ),vǫ

ηǫ in C
(
[0, T ];L2([0, 1])

)
in probability, and uniformly

in ǫ as n approaches infinity. It has been demonstrated in [12] that, for every n ≥ 1

lim
C→∞

sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ,n (t, .)|2 ≥ C
)
= 0. (4.5)

Observe that

sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ |2 ≥ C
)
≤ sup

ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ − V
β(ǫ),vǫ

ηǫ,n |2

+ sup
t≤T

|V β(ǫ),vǫ

ηǫ,n |2 ≥ C
)

≤ sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ − V
β(ǫ),vǫ

ηǫ,n |2 ≥ C

2

)
(4.6)

+ sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ,n |2 ≥ C

2

)
. (4.7)

By letting C approach infinity, and exploiting the boundedness in probability of

|V β(ǫ),vǫ

ηǫ,n |2, we get

lim
C→∞

sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ |2 ≥ C
)

≤ lim
C→∞

sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),vǫ

ηǫ − V
β(ǫ),vǫ

ηǫ,n |2 ≥ C

2

)
.

Now by letting n tend to infinity, due the convergence in probability of V
β(ǫ),vǫ

ηǫ,n to

V
β(ǫ),vǫ

ηǫ , we conclude that

lim
C→∞

sup
ǫ∈(0,1)

P
(
sup
t≤T

|V β(ǫ),uǫ

ξǫ (t, .)|2 ≥ C
)
= 0. (4.8)

Therefore

lim
C→∞

sup
ǫ
P (θǫ ≥ C) = 0,

and the assumption of Lemma 3.4 is satisfied. This establishes the tightness of Jǫ
4 .

The proof of tightness for Jǫ
3 follows by the same analogy as Jǫ

5 , and thus omitted.

Therefore, the tightness of V
β(ǫ),uǫ

ξǫ in C
(
[0, T ];L2([0, 1])

)
is concluded.

Having the tightness of Jǫ
i for i = 1, 2, 3, 4, 5 at hand, by Prohorov’s theorem,

we can extract a subsequence along which each of the aforementioned processes

and V
β(ǫ),vǫ

ηǫ converge in distribution to J0
i and V 0,v

η (t, x) in C
(
[0, T ];L2([0, 1])

)
.

We aim to show that the respective limits are as follows:
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J0
1 =

∫ 1

0

Gt(s, y)ξ(y)dy,

J0
2 = 0,

J0
3 = −

∫ t

0

∫ 1

0

∂yGt−s(x, y)g(s, V
0,v
η (s))(y)dyds,

J0
4 =

∫ t

0

∫ 1

0

Gt−s(x, y)f(s, V
0,v
η (s))(y)dyds,

J0
5 =

∫ t

0

∫ 1

0

Gt−s(x, y)σ(s, V
0,v
η (s))(y)v(s, y)dyds.

The case i = 1 follows from lemma (4.3). The case i = 2 follows from Lemma 3 in
[4]. Note that convergence in probability in C([0, T ]× [0, 1]) implies the same in
C
(
[0, T ];L2([0, 1])

)
. As for i = 3, we invoke the Skorokhod Representation Theo-

rem [9], and thus assume almost sure convergence on a larger, common probability
space. Denote the RHS of J0

3 by J̄0
3 . We have

|Jǫ
3 − J̄0

3 | ≤
∫ t

0

∫ 1

0

|∂yGt−s|(|1 + |V β(ǫ),vǫ

ηǫ |+ |V 0,v
η |)|V β(ǫ),vǫ

ηǫ − V 0,v
η |dyds

≤ (sup
x,t

|V β(ǫ),vǫ

ηǫ − V 0,v
η |)

(
T (sup

t
|V β(ǫ),vǫ

ηǫ |2 + sup
t

|V 0,v
η |2)

( ∫ t

0

∫ 1

0

|∂yGt−s|2
)1/2

+

∫ t

0

∫ 1

0

|∂yGt−s|dyds
)
, (4.9)

where the Lipschitz property of g with linearly growing constant, Hölder’s inequal-
ity, and the properties of the regularizing kernel have been used. The right-hand-

side of (4.9) thus converges to zero as ǫ→ 0 since V
β(ǫ),vǫ

ηǫ → V 0,v
η , and

∫ t

0

∫ 1

0

|∂yGt−s|2dyds ≤ C(T ),

By the fact that the limit is unique, and that J̄0
3 is a continuous random field (by

Theorem 3.3) we conclude that J0
3 = J̄0

3 . The case i = 4 follows by the same exact
analogy as the third case. For i = 5, we invoke the Skorokhod Representation
Theorem [9] again. Denote the right-hand-side of J0

5 by J̄0
5 . We have

|Jǫ
5 − J̄0

5 | ≤
∫ t

0

∫ 1

0

|Gt−s||σ(s, V β(ǫ),vǫ

ηǫ (s))(y)− σ(s, V 0,v
η (s))(y)||vǫ(s, y)|

+

∫ t

0

∫ 1

0

|Gt−s|σ(s, V 0,v
η (s))(y)|vǫ(s, y)− v(s, y)|dsdy (4.10)

The first term on the right-hand-side of (4.10) can be bounded above by

M
[ ∫ t

0

∫ 1

0

|Gt−s|2|σ(s, V β(ǫ),vǫ

ηǫ (s))(y)− σ(s, V 0,v
η (s))(y)|2dyds

]1/2

≤ C(T )(sup
x,t

|V β(ǫ),vǫ

ηǫ − V 0,v
η |) (4.11)
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where the Cauchy-Schwartz inequality, the properties of the regularizing kernel
and control, and the Lipschitz property of σ have been used. The first term on

the RHS of (4.10) thus converges to zero, since V
β(ǫ),vǫ

ηǫ → V 0,v
η as ǫ → 0 . The

second term on the RHS of (4.10) also converges to zero as ǫ → 0, since vǫ → v,
and

∫ t

0

∫ 1

0

|Gt−s|σ(s, V 0,v
η (s))(y)dyds <∞.

Again, by the fact that the limit is unique, and that J̄0
5 is a continuous random

field (by Theorem 3.3) we conclude that J0
5 = J̄0

5 . Thus, we have proven that along
a subsequence, the controlled process converges to the limiting equation. �

4.2. Verification of Condition (A1). Condition (A1) follows by Theorem 3.3,
and applying Theorem 4.2 with β = 0. This concludes the proof of Theorem 4.1.
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