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Abstract— The optimal bidding strategy for trading electricity 

from a wind farm is not always clear. This paper outlines a 

method for predicting whether the market will be long or short 

and uses this information to select the best quantile regression 

for the current market conditions. Results from a simulation 

with a 2.5MW turbine produced a savings of over £1000 over a 

three month period compared to using only a P50 forecaster. 

Index Terms—Wind energy, energy markets, quantile regres-

sion,  

I. INTRODUCTION  

 

One problem in the wind power industry is how to deliver 

an optimal trading strategy for the electricity generated from 

a wind farm; this problem will only become more pronounced 

as the penetration of wind energy increases.  

The current literature on this matter skews towards risk 

averse strategies (Galloway, Bell, McDonald, & Siewierski, 

2006)  (Matevosyan & Soder, 2006), indicating that a genera-

tor should contract low and accept whatever price is offered 

for over generation. As more wind farms are connected to the 

transmission system this strategy becomes less desirable as 

the risk of curtailment increases, if a generator is over their 

contracted volume and there is too much power on the system 

(Gardner & Papadopoulos, 2012).  

If the state of the electricity market could be predicted then 

a generator would know whether to contract a cautious or 

optimistic level.  (Jonsson, Pinson, Nielson, & Madsen, 2014) 

employed a Holt-Winters model to make a day ahead forecast 

of the state of the Nord Pool Elspot market with good results. 

This paper follows on from the ideas explored by these au-

thors, applying them to the UK energy market using a differ-

ent model to predict the state of the market. 

The Nord Pool is divided into two markets: the Elspot and 

the Elbas. The Elspot is a day ahead market; trading for the 

next day is finalised at noon and the price of electricity for 

each hour is calculated. The Elbas is an intraday market 

where trades can be made up to one hour before delivery. The 

UK electricity market is combination of these two where the 

majority of electricity is traded well in advance of the settle-

ment period but trading can occur up to one hour before de-

livery.  

This paper uses data from the UK electricity market to 

forecast the state of the market and uses this information to 

select from a range of quantile regressions that best reflect the 

current optimal trading strategy. This is shown to be finan-

cially beneficial over a more cautious strategy. 

 

II. MARKET OVERVIEW 

 

Electricity in the UK is traded in thirty minute settlement 

periods. Generators are required to submit the level of ex-

pected generation traded from each of their assets one hour 

before the start of a settlement period.  

Parties that wish to trade electricity in the UK are required 

to hold a license or an exemption. Exemptions are available 

for smaller generators that produce less than 50MW of power 

as these are considered to pose little risk to the network   

(Department of Electricity, 2001). Parties with an exemption 

are not subject to the balancing mechanism. This paper con-

cerns those licensed parties signed up to the Balancing Set-

tlement Code. 

When there is an imbalance between a party’s contracted 

volume and the amount of electricity actually delivered (me-

tered volume) the cost of this imbalance is covered by two 

prices: The System Buy Price (SBP) and the System Sell 

Price (SSP). When a party under-generates they will have to 

buy the deficit at the SBP and when they over generate they 

will sell the surplus at the SSP (Elexon, 2014). 

There are two different pricing methods used to calculate 

the SBP and SSP, the main pricing method and the reverse 

pricing method: 

 The main pricing method is a volume weighted average 

of all imbalance cost experienced for the settlement peri-

od.  
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 The reverse pricing method is calculated to reflect what a 

generator would have gotten if it had traded the imbal-

ance at the power exchange.  

For each settlement period only one imbalance direction is 

penalised. When there is too much power on the transmission 

system (Grid) it is considered long; the SSP is calculated us-

ing the main pricing method and the SBP is calculated by the 

reverse pricing method. Here there is no penalty for under-

generating as the party will be able to purchase energy at the 

same price as they traded at for their contracted volume. If 

they over-generate they will receive a lower price than what 

they could have obtained at the power exchange. 

When the Grid is ‘short’ (not enough power) the SBP is 

calculated using the main pricing method and the SSP is cal-

culated using the reverse pricing method. In this case the gen-

erator will receive the same price for excess generation as if it 

had been traded on the power exchange and the penalty for 

under-generating will be more severe: the generator will have 

to pay the SBP for the deficit, which will be higher than the 

price received for the contracted volume.  

For a generator there are two likely conditions they will 

experience: they will either be in surplus, when they over 

generate; or in deficit, when they under generate. The differ-

ent costs associated with these two conditions, surplus cost 

and deficit cost, are explained further in III.C.  

A sample of the cost involved in trading for a single day is 

presented in Figure 1. Notice for a single settlement period 

only one cost is penalised while the other is zero, and that the 

direction of penalty can change from one period to the next. 

  

 
Figure 1: Example of surplus and deficit cost for the 21st 

Feb 2013. During any one settlement period only one cost 

is penalised. 

 

When dealing with wind generation it can be assumed that 

there will be an imbalance between contracted and metered 

volume as even the best forecasting tools are not 100% accu-

rate. Knowing there will be this imbalance, it would be finan-

cially beneficial if the imbalance is on the correct side of the 

market. 

When the Grid is long there is no penalty for under-

generation so the preferred behaviour of the forecaster is to 

be optimistic in this situation. When the Grid is short, a more 

conservative forecast should be used as the penalties occur 

for under-generation. 

 

III. METHODOLOGY 

A. Data 

The balancing mechanism prices used in this paper (Sys-

tem Sell Price and System Buy Price) were obtained from 

Elexon covering the year 2013 and the first three months of 

2014. The market price, XP, is taken from the UKPX over the 

same period. This data set was split into a training set com-

prising all of 2013 and a validation set using the three months 

from 2014.  

The wind data used is hourly averaged wind speeds taken 

from the FINO 1 weather station (Bundesministerium fuer 

Umwelt). One hourly data is used as a stand-in for actual 

wind speeds. 

  

B. Quantile Regression  

When a forecaster fits a linear regression model, it pro-

duces a forecast with an evenly distributed error; this means 

there is an even chance that the actual value will be above or 

below the predicted value (Draper & Smith, 1998). In quan-

tile regression (Koenker & G. Bassett, 1978) this method is 

referred to as a 50
th

 quantile forecast, but when there is an 

asymmetric loss function, as there is in the case of the elec-

tricity market, this is not the most appropriate model.  

Quantile regression is used in this research to form a 

probabilistic spread of forecasts that can be selected depend-

ing on the prediction of the Grid state. In Figure 2 the top line 

is the 90
th

 quantile, meaning that 90% of the time the actual 

value will be at or under the forecast, and bottom line is the 

10
th

 quantile, meaning 10% of the time the actual value will 

be at or below the forecast.   
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Figure 2: A series of quantile regressions can form a 

spread of possible forecasts for each time step. 

The quantile regression models used in this paper were 

fitted using the “quantreg” package in R and the wind data 



was filtered using the methods outlined in (Hill, McMillan, 

Bell, & Infield, 2012). 

 

C. Cost of Error Metric 

The cost of the error in a forecast is defined by three val-

ues: the SSP, SBP, and the exchange price received for the 

contracted volume (XP). This is an asymmetric loss function, 

albeit one that alternates. When a forecast over predicts, caus-

ing an under-generation, the loss is related to how much more 

is paid through the SBP to make up the deficit: 

 

 Deficit Cost(£/MWh) = XP - SBP (1) 

 

When the Grid is long the deficit cost will be 0. 

When a forecast under predicts, the excess generation is 

sold at the SSP. This is viewed as a loss of potential revenue 

which could have been gained if this volume had been traded 

on the exchange: 

 

 Surplus Cost(£/MWh) = SSP - XP (2) 

 

When the Grid is short the surplus cost will be 0. 

It was decided that the losses should be expressed as a 

negative number. 

 

D. Forecasting the Grid State 

Forecasting the state of the Grid requires the identification 

of the proportion of time the Grid is in each state. Overall in 

2013 (the training set) the Grid was long 57.3%, short 36.8% 

and neutral 5.9% of the time. A neutral Grid is a time when 

neither imbalance is penalised. The proportional share of each 

Grid state changes for each settlement period, with a higher 

percentage of neutral Grids found in the early settlement pe-

riods. The Grid is more likely to be long in the settlement 

period preceding an anticipated increase in demand like 

around settlement period 10 and 31 (Figure 3).  

 

 
Figure 3: Share of Grid states for each settlement period 

and average demand. 

 

The relationship between the settlement periods and 

probability of being in each Grid states is non-linear in 

nature. For this reason an Artificial Neural Network (ANN)  

(Picton, 1994) was chosen as the method to predict the Grid 

state. Along with the settlement period being predicted, 

inputs to the ANN are the current Grid state, the current 

imbalance prices (SBP, SSP) and the exchange price (XP). A 

short Grid is assigned a value of -1, a long Grid a value of 1 

and a neutral Grid 0.  

The ANN used is a Multilayer Perceptron with a single 

hidden layer of six nodes and is trained using back propaga-

tion. The market data from the year 2013 is used to train the 

ANN and the output is a numerical value. The interpretation 

of what output indicates a long or short Grid requires striking 

a balance between successful predictions and the number of 

settlement periods where no decision is made. 

   

E. Selecting the Quantile 

If the state of the Grid could be predicted perfectly each 

time then the optimal bidding strategy would be to contract 0 

generation when the Grid is short, as the market price will be 

received for all generation produced, and to contract for full 

capacity when the Grid is long, as the deficit generation can 

be purchased at the same price it was sold. This strategy is 

expressed mathematically in (Jonsson, Pinson, Nielson, & 

Madsen, 2014) based upon the expectation value for the defi-

cit and surplus costs.  

There are problems with this bidding strategy. Firstly no 

forecast is 100% accurate and the losses experienced when on 

the wrong side of the imbalance would counter the saving 

made when the prediction was correct. Secondly, the system 

operator has an expectation that the notifications of genera-

tion will reflect actual generation within an acceptable margin 

of error. Frequent and large deviations from contracted vol-

ume will draw the attention of the system operator who may 

chastise a party, ultimately revoking a party’s license to trade 

if it deems the behaviour to jeopardise the stability of the 

Grid.  

For these reasons when the Grid is forecast to be long the 

80
th

 quantile is selected, instead of full production. When the 

Grid is short the 20
th

 quantile is used instead of zero. When it 

is a neutral Grid the 50
th

 quantile is used. The selection of the 

80
th

 and 20
th

 quantile was an arbitrary choice to test the sys-

tem. Future work will involve analysing the outputs from the 

ANN and the confidence levels associated with each output to 

better select the appropriate quantile. 

  

IV. RESULTS 

A. Assessing the model  

The model efficacy is assessed by the proportion of the 

data in which a quantile other than P50 is selected; the per-

centage of successful predictions forecasting a long or short 

Grid and the overall cost of operation as calculated using the 

error metric outlined in III.C.  

 



B. Accuracy 

As a baseline of success a persistence style forecast of the 

market is used. A persistence forecast takes the current state 

of the market as the forecast. Using this method the state of 

the Grid was successfully predicted 65% of the time. Looking 

at the accuracy of the model for predicting whether the Grid 

is long or short; 69% of the long predictions were correct, and 

59% of short predictions were correct.  

To assess the efficacy of the ANN what is considered a 

forecast of a long/short Grid has to be defined. This could be 

done in a binary fashion by taking all positive outputs from 

the ANN to be a long prediction and any negative number as 

a short prediction. This produces the same overall accuracy as 

the persistence model (65%). It performs worse for long pre-

dictions (67%) and better for the short predictions (60%) than 

persistence. This indicates that a binary approach to the clas-

sification of the Grid is not the optimal strategy and adding in 

a margin for the neutral Grid is required. 

Appropriate boundaries for a long or short Grid are ascer-

tained by varying the thresholds from 0.1 to 1 for the long 

prediction and -0.1 to -1 for the short prediction. When this 

was performed on the training set the thresholds that returned 

the lowest cost of operation were 0.3 for long and -0.1 for 

short. This limited the percentage of decisions made to 81% 

of the time series, but the accuracy of the forecaster improves 

to 67%. This is due to an increase in accuracy to 70% for 

long predictions and 62% for short predictions. In this ar-

rangement the Grid is forecast long 50% of the time and short 

31%. The 19.2% where the system forecasts a neutral Grid is 

well above the 5.9% observed in the training set. However, it 

is difficult to comment on whether this was the correct deci-

sion as the thresholds for a long or short Grid were deter-

mined by the values that returned the greatest saving in the 

training set. The percentage correct in Table I refers to times 

when the forecast was biased in the correct direction therefore 

using the Q50 is not considered correct or incorrect in this 

situation. 

TABLE I. COST OF QUANTILE 

 

Quantile (Q) % used % correct 

Q80 49.6 70.0 

Q20 31.2 62.2 

Q50 19.2 - 

Overall - 67.0 

 

C. Cost  

The wind speed forecasts and wind speed measurements 

are converted into power using a manufacturer’s power curve 

for a 2.5MW wind turbine. The error from the forecast is ex-

pressed in terms of the cost accrued when the imbalance is 

handled by the balancing settlement code. 

Table II summarises the cost associated with implementing 

each of the quantile regressions exclusively. An interesting 

observation is the best quantile to trade at was not the Q50 

but the Q40. This may be particular to this data set but it is 

worth exploring the cost of trading based on each quantile 

further with a larger data set. 

TABLE II. COST OF QUANTILE 

Quantile (Q) Cost (£) 

10 -5580 

20 -3895 

30 -3359 

40 -3271 

50 -3519 

60 -3973 

70 -4842 

80 -6253 

90 -8768 

 

This case study considered the power being traded from a 

single 2.5MW turbine over a three month period. The total 

cost of the error when using the Q50 forecast was -£3519. 

When the switching method was implemented the cost fell to 

-£2445, giving an overall saving of £1074.   

 

V. CONCLUSION AND DISCUSSION 

 

The intention of the method reported here is to provide a 

guide to interpreting a probabilistic forecast; the chosen mod-

el in this paper of constructing multiple quantile regressions 

is just one way to create a probabilistic spread. Any statistical 

forecast with a known variance could be used as a probabilis-

tic forecast. Instead of disregarding the error for a point fore-

cast, the error distribution can be used to form a probabilistic 

forecast. 

The results achieved are quite promising with a saving of 

over £1000 for a single turbine in three months. Extending 

this to a full wind farm over a year will give a non-trivial 

saving in the operational cost of operating a wind farm. A 

reduction in the risks associated with trading may translate to 

a reduction in the price for wind power — a saving that can 

be passed onto customers. 

VI. FUTURE WORK 

A. Model Refinement 

The work carried out in this paper is a first attempt at 

adapting and applying the work of Jonsson et al. to the UK 

electricity market using a small market data set and an avail-

able wind data set as a proof of concept.  

The work can be further refined with the acquisition of 

half hour averaged wind data from a site within the UK. The 

use of half hour wind data should improve the performance of 

all the forecasters used in this research. An improvement in 

forecaster performance will most likely reduce the overall 

savings reported here, as the cost associated with the Q50 will 



be lower when it is more accurate. However, this will give a 

better indication of the true model performance. 

The model performance may be improved by the inclu-

sion of Net Imbalance Volume, the total balancing required in 

a settlement period, and adding a second seasonal term to 

represent the variation across a week. 

Currently the quantile choices are fixed at the 80
th

, 20
th

, 

and 50
th

 quantile. The reason for this was for simplicity while 

the concept is tested but this can be refined. The output from 

the ANN is a range of values from -1 to 1. By dividing these 

into suitable bins and determining the confidence level for 

each output the most suitable quantile can be selected on a 

period by period basis. 

 

B. Group Behaviour 

The current research involves simulating the trading of 

power from a single turbine, assuming it participates fully in 

the balancing mechanism. A single turbine should not affect 

the overall state of the Grid, but when the strategy is adopted 

by a large wind farm this could cause the Grid to invert. An 

investigation into this possibility would be needed before 

employing this in an industrial context. 

 

C. Modifications to the Balancing Settlement Code 

There is a modification to the balancing mechanism cur-

rently out for consultation  (Elexon, 2015) that would replace 

the dual imbalance pricing with a single imbalance price that 

would reward generators that offset the imbalance of the sys-

tem. Modifying the available data to simulate the proposed 

imbalance pricing method would allow for exploration of the 

consequences of a single imbalance price and the benefits of 

correctly predicting the state of the Grid.    
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