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Abstract — This paper explores how the accuracy of short-

term prediction of wind speed and direction can be enhanced x[n] [ o | m

by considering additional spatial measurements. To achievthis, ' s w dn]

two different data sets have been used: (i) wind speed and di- m yin]

rection measurements taken over 23 Met Office weather statis x[n] G W, 2)——@—> en]
distributed across the UK, and (ii) outputs from the Consorium ' .

for Small-scale Modelling (COSMO) numerical weather model ’

on a grid of points covering the UK and the surrounding sea. A xln] @ @

multivariate complex valued adaptive prediction filter is applied
to these data. The study provides an assessment of how welketh
proposed model can predict the data one hour ahead and what Fig. 1: Multi-channel filter.
improvements can be accomplished by using additional datadm

the COSMO model.

Il. SPATIO-TEMPORAL PREDICTION

A. Complex Multichannel Data
I. INTRODUCTION ) . . .
This study uses hourly mean time series of wind speed

HE growth of wind power requires improvements irand direction measured in/ geographically separate sites.
short-term wind forecast at wind energy sites. As th€hese time series are converted in complex-valued vecher ti
wind penetration becomes more and more important in tleriesz,,[n] € C, m = 1... M, where the wind speed is the
national grids, the accuracy of the wind farms’ power outpumagnitude of the complex variable, the wind direction is the
is of fundamental importance for power system operators apdase, and: is a discrete time index. Moreover, the mean of
for trading on the energy market. The reliability and siifjpil the time series is calculated and removed to create zero-mea
of power systems are decreased, and the operational ceiggsals.
increased, by the high uncertainty in wind. Therefore, it is Using the expectation operatét{-}, the cross-covariance
essential to improve wind prediction at wind farms sites [4pf the data is given by, [7] = &{z;[n]z}[n — 7]}, 4,5 =
[5] particularly for short forecast periods. 1...M, which fori = j provides the special case of the
In literature, several different methods have been used @evariance for sité. From the values of,, ., [], a covariance
reduce the uncertainty in the forecast of wind speed antptrix R andp,, will be defined later. For simplicity, it will
direction. Numerical Weather Prediction (NWP) models arfge assumed a stationarity model so that the covariancexmatri
mathematical models of the atmosphere and oceans that wdkdepend only on the lag time.
current weather observations as inputs. Although thesestsod
have a good performance in forecasting the wind speed, theis  pminimum Mean Square Error Prediction
computational time is highly demanding and therefore threy a . . . : Lo
run typically only every six hours. Hence, as NWP models To prec.h_ct the time seriesy, [n] at them S'te. at t!me index
do not provide hourly wind forecasts, many study in recefr e utilised past measurements from this site and other
years have focused their attention to the problem. In omler‘ct!tes’ wh_erebym = 1...M, with M the _total number of
achieve hourly wind prediction, statistical methods hagerb sites a\(anable. 'I_'he_structure of the predlctor, exempfary
employed that do not require long running time and expew :.1’ IS shpwn n I_:|gurE|1, repr_esentmg&ﬁc}k\}annel linear
knowledge to be used. Moreover, the spatial resolution Bfedmtor with prediction coefficienters,, € C7, where N

NWP is such that a statistical method based on measureme%tt@e ;e:npol_ral wmiow over which prediction is performed.
at the site of interest would still out perform the NWP if itA ap delay line vector

could be run quickly. Tm[n)
In previous works, it has been considered the spatio- T [0 — 1]
temporal prediction of wind speed and direction by means of Xm[n] = . (1)

linear complex valued prediction filters| [2[.][3]. In this e,
it is investigated how the accuracy of temporal predictian ¢
be enhanced by considering additional spatial measuraemetolds this data window at the:th site during iteratiom.

Tm[n — L+ 1]



The adjustment of the coefficients; ,, € CN,i,m =
1...M is performed such that the prediction error
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em[n] = dmn[n] — Z Wi mXi[n] = dnln] — wix[n]  (2)
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with d,,[n] = am,[n + 1] is minimised in the mean square
error (MSE) sense, with the vectoss,, andx[n] formed from
concatenations o#; ,,, andx;[n], i = 1...M, such that

Latitude (degrees)

X1 [n] Wl,m[n] 51t "f__.‘
x2[n] W2.m (1] 50
X[n] = : ’ Wm [n] - . ’ e _sLongitude (degrees)0 ’
X [n] Wazm|[] 3) Fig. 2: Map of the Met Office sites overlapping the COSMO
contain all measurement time series and filter coefficiean,Odel grid.
respectively.
The MSE of the prediction errat,,[n] is given by lIl. WIND DATA
Em = &{emlnle,[n]} 4) For this study, two different type of data set have been used
= o2 —wlp, —pllw,, —wllRw, . (5) totest the prediction filter, which are described below.
By minimising the mean-squared error the result A. Met Office Data

Winopt = R Prm, (6) The British Atmospheric Data Centré][6] provided the
. . : . _ Met Office Integrated Data Archive System (MIDAS) set of
'S knowr;l as the Wiener quf SOIUUOE.[ZD [7], wheRe = nshore weather data from 37 weather stations across the UK,
g{x[f])(} {[g] }[nii*t[:ﬁ} iﬁ;’aéls)gc:cé?/::;(nccg sttocrjagiﬁaeﬁ)rom which a selection of 23 sites with at led@st% of good
ﬁ]’g (;esiredmsi nadl,,[n] for site m and the data vector. Its data has been made shown in Figure 2. The observations are
minimum valuge fo;nthe MSE in[{5) can be calculatéd btaken at 10m from ground and provide wind speed [knots]
inserting [5) ¥ind direction [deg] sampled every hour. The time window

9i®) chosen for this study is of two years, starting from 00:00h
m=o02 —pliR™! . 7) on 1/01/2006 to 23:00h on 31/12/2007.
gm,mln Tom pm pm ( )

Therefore, the prediction is made by usidg previous
values of theM time series that are weighted by the optimal B. COSMO Model Data
coefficients,w,, opt, With the objective to minimise the MSE ~ The Consortium for Small-scale Modelling (COSMQ) [1]
of the forecast at siter, m = 1... M. has developed a non-hydrostatic limited-area atmospbegic
diction model. The data provided are the zonal and meridiona
. . wind speeds [m/s]y andv respectively, at 10m above ground
C. Thinning of the Predictor and Figuré R shows the area covered by the model grid points.
In order to investigate which of the remainilg — 1 sites The resolution of the data is of 0.1deg; the original resotut
have the greater contribution on the wind forecast for aetargsf the model has been reduced. For the purpose of this study,
sitemn, the aim is to create a sparse prediction filter combiningata for the two years of interest, 2006 and 2007, have been
only dominant contributions. The effect of not taking pautar ~ selected and converted in to complex-valued time series.
spatial/temporal information into account can be investd
based on reduced or thinned versions of the covariancexmatri IV. RESULTS

and grogs-correlaﬂon vector iRl (6) . The algorithm has been tested on the MIDAS and COSMO

Thlnmng pr andpy has been_comp_uted by remMoviNg 514 set. The filter coefficients have been calculated using
tap gt positionk, k < [1;1.{] and dlsfcardlng the approprlatethe data from 2006 as training data, and then the prediction
entries fromR andp,, using a matrix algorithm has been tested on the data from 2007.

I... 0 O (K—1)x K
Vi = ez . 8
fok 0 0 Ik (®) A. Prediction Based on MIDAS Data Set
Thinning is applied recursively to eliminate an increasign- To analyse the spatial and temporal correlation between the

ber of coefficient. Generally, at thih iteration the coefficient different sites, the elements of the covariance matrix have
is removed that minimises the minimum mean-squared ertmgen investigated. In figulg 3, it is shown a colour plot of

(MMSE). At each iteration the MMSE is calculated, and thtéhe covariance matrix for the 23 Met Office weather stations:

removed coefficient is noted. Therefore, afteiterations, only on the main diagonal there are the covariance of each site
MN — L dominant coefficient remain. and on the off-diagonal the cross-covariance betweenrdiite
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Fig. 3: Colour plot of the covariance matrix for the 23 MeFig. 4: Plot of the normalised MMSE for site 7 as a function

Office weather stations. of the removed coefficients from the covariance matrix.
Site 8 analysis: | Site 7 analysis: At : "
Normalised MMSE: 0.0539 Normalised MMSE: 0.0664 B. Prediction with Additional COSMO Data
site 8, lag 0: 99.1%] site 7, lag 0: 98.9%] The attention was focused on the analysis of only site 8.

including site 8, lag 2: 99/5¢] | including site 8, lag 0: 99[%
f

including site 2. lag 0- 9916¢] | including site 8. lag 3: 99[5¢ The procedure previously described has been carried aug usi
]
]

other two data sets: one set considers only the measurements
from the MIDAS site 8 (the target site) and the surrounding
TABLE I: Dominant coefficients that contribute to the MMSEJata from the COSMO model, and the other data set contains
for the prediction of sites 8 and 7. all the 23 MIDAS sites plus the COSMO data around site 8.
The COSMO data have been selected considering the closest
grid point to the target site and then selecting the datayever
5 grid points from a 20x20 grid around it.
sites. As evident from figurlel 3, some sites have a high cross-Table[ll shows the normalised minimum mean-squared error
correlation; e.g. sites 7, 8 and 9 which are situated in tloé the prediction for site 8. The MMSE previously obtained
Gwynedd and Cumbria areas respectively. Whereas other wisith all the MIDAS site was 0.0539 (see tal#1®). It is evident
measurements are poorly correlated together. In partjculénat the addition of the COSMO data provides an improvement
sites 10 (in Aberdeenshire) and 23 (in Dyfed) have negligibin the prediction, especially when added to all the MIDAS
variance with all the stations. sites; where the MMSE is reduced by more tl$3h.

To investigate the contribution of each site to the prdD tablell are also reported the first five more important

diction of one target site, the respective coefficientsdasi contributions to the error from each site or COSMO grid
nt. It is evident that the most important contributiomues

the covariance matrix have been removed one by one M - . .
the mean-squared error calculated at each step. Resuits f{i°™ the previous measurements of the target site. It is
two interesting sites are shown in tale I, where the MMSEresting to note that, when the COSMO data are added

obtained for the prediction of each site is reported togeth® the Met Office weather data, the next contributions come
with the contribution to the MMSE from the first 5 more{foM neighbouring COSMO grid points instead of site 7 that
important sites. It is interesting to note that, for site 8go 'S Situated downstream to site 8. As expected, the COSMO

important contribution appears to be from site 2 (situatad §Md Points 44 and 46 are situated respectively south-west
the coast of Cornwall, see figUEk 2) that is upstream to site 8.2Nd south to site 8. This result suggests that depending on
fact, site 2 together with the target site 8 contribute mbent € Position of the target site and the prevailing direction
99% to the MMSE. Results for site 7 shows the correlatiofff Weather systems, the contribution to the prediction can
between sites 7, 8 and 9, as mentioned earlier. Considéring P& Improved by including only the appropriate data. When
relative position of each weather station, it can be dedtfead cONSidering only the measurements from the site 8 and the
sites located upstream have the major impact on the predict-OSMO data, the prediction error is the same as for the case
of the target site. This is confirmed by results in tdble | vehetVith all 23 sites. From tablglll, it can be seen that the most

sites 8 and 9 contribute up ©9.6% of the MMSE for the important COSMO grid points are the_ closest one (grid point
prediction at site 7. 13) and the one south to the target site.

including site 7, lag 0: 99{%| | including site 9, lag 0: 99[66
including site 1, lag 0: 99{%] | including site 1, lag 0: 99[%

Another interesting aspect to notice is that only few sites )
contribute to the MMSE, as evident from figufe 4. The plot C: Wind Forecast
shows the contribution to the MMSE for the prediction at site Finally, the algorithm prediction has been tested for al th
7; it is apparent that only the last coefficients have a sicgnifi  sites. It has to be noticed that, to avoid transient behasiou
impact on the error. Similar results are obtained for all28e and problems in the prediction, it is necessary that the time
MIDAS sites. series considered do not have missing data. For this purpose



MMSE contributions|[%)]

Prediction made with site 8 and COSMO data:
Normalised MMSE: 0.0530

site 8, lag 0: 99.3

including site 8, lag 1: 99.4

including COSMO grid point 13, lag 0: 99.4
including COSMO grid point 24, lag 0: 99.5
including COSMO grid point 9, lag 2: 99.6
Prediction made with all MIDAS Site and COSMO data:
Normalised MMSE: 0.0492

site 8, lag 0: 98.9

including site 8, lag 1: 99

including COSMO grid point 2, lag 0: 99.1
including COSMO grid point 44, lag 0: 99.1
including COSMO grid point 46, lag 0: 99.2

TABLE II: Dominant coefficients that contribute to the MM
for the prediction of site 8 using 3 different data set.

V. CONCLUSION

This paper has analysed the relative importance of each time
series within the prediction algorithm in order to achieke t
lowest forecast error with the minimum number of data. The
results showed that some sites have a strong correlation and
therefore only few sites contribute to minimise the predict
mean-squared error. This suggests that the computational
time for the forecast can be reduced and optimised without
compromising its accuracy.

Moreover, it has been analysed whether the addition of
data from the COSMO model has an impact in the forecast

SEperformance. The effect of the COSMO data depends on the
position of the target site respect to other MIDAS weather
stations and the criteria chosen for the selection of the-add
tional data from the model. In general, with few exceptions,
COSMO data do aid in the prediction of MIDAS site time
series. A particular case has been analysed more in détil; t
selected measurements were from Valley (site 8) on the north
western coast of Wales. In that case the prediction error has
been reduced by adding some data from neighbouring points
around the target site.

As several methods can be used to include additional data
from the COSMO model, this requires further investigation o
the best technique to select the data. It has to be noticéd tha
the results seem to be site specific, therefore a deepersisaly
of this aspect is needed.

Further improvement can certainly be achieved by consid-
ering the non stationarity of wind. Annual cycles as well
. ) . . . - . as seasonal variation in wind regimes have motivated the
Fig. 5: Tl_me SEries from site 8 (in blue), pre_d|ct|on with ynl development of a cyclo-stationary Wiener filtér [3]. Future
MIDAS S't‘?S (in green) and COSMO data (in red). Zoom Rork is planned to test the cyclo-stationary filter with the
the time window between hours 70 and 120 additional COSMO model data. In addition to this, diurnal
variations, as sea breeze regimes, remain to be analysed and
need to be explored.

time window of 170 hours has been selected, from 8/02/2007
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