Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair

Hall Barrientos, Ivan and Paladino, Eleonora and Brozio, Sarah and Passarelli, Melissa K. and Moug, Susan and Black, Richard A. and Wilson, Clive G. and Lamprou, Dimitrios A. (2017) Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair. International Journal of Pharmaceutics, 517 (1-2). 329–337. ISSN 0378-5173

[img]
Preview
Text (Hall-Barrientos-etal-IJP-2016-Fabrication-and-characterisation-of-drug-loaded)
Hall_Barrientos_etal_IJP_2016_Fabrication_and_characterisation_of_drug_loaded.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB) | Preview

Abstract

The chemical distribution and mechanical effects of drug compounds in loaded electrospun scaffolds, a potential material for hernia repair mesh, were characterised and the efficacy of the material was evaluated. Polycaprolactone electrospun fibres were loaded with either the antibacterial agent, irgasan, or the broad-spectrum antibiotic, levofloxacin. The samples were subsequently characterised by rheological studies, scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle goniometry (CAG), in vitro drug release studies, antibacterial studies and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Increased linear viscoelastic regions observed in the rheometry studies suggest that both irgasan and levofloxacin alter the internal structure of the native polymeric matrix. In vitro drug release studies from the loaded polymeric matrix showed significant differences in release rates for the two drug compounds under investigation. Irgasan showed sustained release, most likely driven by molecular diffusion through the scaffold. Conversely, levofloxacin exhibited a burst release profile indicative of phase separation at the edge of the fibres. Two scaffold types successfully inhibited bacterial growth when tested with strains of E. coli and S. aureus. Electrospinning drug-loaded polyester fibres is an alternative, feasible and effective method for fabricating non-woven fibrous meshes for controlled release in hernia repair.