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Abstract

An asymptotically exact method for the direct computation of turbulent polymeric liquids that

includes (a) fully resolved, creeping microflow fields due to hydrodynamic interactions between

chains, (b) exact account of (subfilter) residual stresses, (c) polymer Brownian motion, and (d)

direct calculation of chain entanglements, is formulated. Although developed in the context of

polymeric fluids, the method is equally applicable to turbulent colloidal dispersions and aerosols.
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PROLOGUE

Traditionally, the study of polymeric liquids [1, 2] (and similarly of colloidal dispersions

[3, 4]) involves two major strains of thought. On the one hand, there is the viscoelastic

fluid dynamics approach [5–7], that models complex fluids as continuum field theories, by

employing a suitable constitutive law. Due to its relative simplicity and affinity with stan-

dard fluid dynamical investigations, this approach is particularly suitable for the analysis of

complicated flow phenomena including instabilities and turbulence [8–10]. However, such

studies are usually limited to dilute polymer systems, since dense polymer flows necessarily

involve entanglements between polymer chains, and the effects of the latter on elastic stresses

levels are difficult to accurately capture with standard constitutive laws [11, 12]. Another,

equally important, limitation of the classical field theoretic approach is that the employed

constitutive laws originate in rheological flows that are either simple elongational/shear

flows, or involve periodic unsteady effects (see particularly lucid discussions of these in

[11, 13]). The applicability of rheological constitutive laws to fully developed turbulent

fluctuation fields is not straightfoward, since the latter are non-Gaussian and highly inter-

mittent [14–16], hence the polymer chains find themselves interacting with velocity fields of a

much higher degree of unstructured unsteadiness than usually is the case in rheology [17, 18].

The need for a constitutive law is bypassed via mesoscopic modeling of polymeric liquids

[19]. In this formulation, the solvent is described via the Navier-Stokes equation, and is

coupled with the polymer chains that are modeled by some version of the bead-spring model

[12, 20, 21]. Due to the mesoscopic character of the modeling, the polymer chains interact via

effective intermolecular potentials, and undergo Brownian motion. Such hybrid fluid-chains

formulation has many advantages over the aforementioned fully continuum approach: (a)

there is no need for a constitutive law, since elastic effects in the flow are taken into account

from first principles via chain elasticity, and the explicit coupling of the chains with the

flow field. It is important to note that, in order for this statement to be valid in non-dilute

systems, one needs to employ a version of the bead-spring model that allows the forma-

tion of entanglements between chains and the calculation of their implications on elastic

stress levels, (b) since information about the locations of polymer chains and fluid vortical

structures is made available by the model, the detailed physics of turbulence-polymer inter-
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actions in grid turbulence [22] and turbulent boundary layers (excellently discussed in the

context of polymer drag reduction in [23]) can be studied. Notably, even in dilute systems,

such turbulence-polymer couplings would most probably be entwined with both chain en-

tanglement and hydrodynamic-interactions effects between chains in locally polymer-dense

areas, as is the case, for example, in between turbulent coherent vortices where polymers

might be expected to concentrate [14, 24]. Similar ideas are also valid for turbulent flows in

colloidal dispersions and aerosols [25], that feature particle aggregation/clustering phenom-

ena [26, 27] which require the capturing of hydrodynamic interactions between particles at

high concentration areas, as is the case, for example, during rain initiation processes [28–30].

Therefore, there is a need for mesoscopic, physical formulations/numerical methods that

allow the direct computation of turbulent polymeric (and colloidal) fluids. Such methods

have to overcome a number of challenges: (a) the forcing of the fluid by the particles is

delta-function type (i.e., pointwise), hence standard methods for computational fluid dy-

namics need an extremely fine grid in order to capture the microscopic flow field in between

the particles that corresponds to their hydrodynamic interactions, (b) efforts to average

the forced Navier-Stokes equations in order to overcome this problem, lead, due to non-

linearity, to the appearance of subgrid scale stresses that need to be taken into account

via some type of modeling, (c) the accompanying numerical method needs to handle the

Brownian, i.e., stochastic motion of polymer and colloidal particles; this adds an additional

level of complexity to standard computational methods for suspensions [31], (d) in poly-

meric liquids, the formulation and numerics need to describe the formation and dynamics of

entanglements between macromolecular chains, in order for the approach to be applicable

to arbitrary polymer volume fractions. In this paper, I formulate a computational method

that addresses all these issues, and, moreover, in the limit of very small particle sizes, it

becomes asymptotically exact.

MESOSCOPIC DESCRIPTION OF POLYMERIC FLOWS

As discussed above, within the mesoscopic framework, a solvent/continuum is coupled

to a polymer/particle system. Hence, the solvent is fully described by an (incompressible)
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velocity flow field u(x, t) at position x and time t, and a fluid pressure p(x, t). In order to

avoid a complicated mathematical formalism, I am going to describe the polymers directly

at the bead-spring model level [20, 21] (i.e., I am going to avoid a description in terms of

one-dimensional elastic curves). An advantage of such a choice is that the connection of the

formulation with both its polymer computational implementations and colloidal-dispersions

applications is significantly more transparent. Hence, in the context of a bead spring model,

each of the Nc chains in the computational domain is discretized into Nb spherical beads

(thus the total number of particles in the system is equal to N = NcNb). Consequently, a

key polymer variable is the N -dimensional bead-position vector Rb = (r1, r2, ..., rN ). In the

following, I employ tensor notation such as ui, r
k
j , r

k′

i where i, j = 1, ..., 3 are indices de-

noting the three spatial directions, and k, k′ = 1, ..., N are indices denoting polymer beads.

Repeated indices are always summed, unless stated otherwise.

The motion of the solvent (fluid) obeys the forced Navier-Stokes equations for the fluid

velocity u(x, t):

∂ui

∂xi

= 0, (1)

ρ
∂ui

∂t
+ ρ

∂(uiuj)

∂xj

+
∂p

∂xi

− µ
∂2ui

∂xj∂xj

− dFi
k
δ(x− rk) = 0, (2)

where ρ is the fluid’s mass density, µ is the fluid’s dynamic viscosity, and dFi
k
is the drag

force exerted by the polymer bead k onto the fluid. There is an implied summation over

the bead index k. Since this is a coupling force, it appears with exactly the opposite sign

in the chain dynamics equation. As discussed above, the correct account of this force re-

quires the resolution of the hydrodynamic interactions between the various polymer sections.

The polymers obey Brownian (stochastic) dynamics. In order to incorporate entangle-

ments in the polymer physics, I am going to follow here the entanglement model of [20, 21].

The model is best explained by returning momentarily to the continuum description of poly-

mer dynamics, i.e., by considering the ensemble of Nc elastic strings that is collectively called

L. Then the motion of a point rL ∈ L is described by the equation [20, 21]

if + ef + mf + cf + df + tf = 0, (3)
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Entanglements

FIG. 1. Entanglements between chains are of key dynamical importance; by obstructing polymer

motion they are responsible for elastic stress augmentation

where if = µpd
2rL/dt

2 (with µp been the polymer mass per unit length) is the inertial

force, ef is the elastic force, mf is the intermolecular force, df is the hydrodynamic drag

force, and tf is the Brownian thermal force (all per unit length). The contact force cf was

introduced in [20] in order to ensure that the polymer chains cannot pass through each other.

This cannot be accomplished by the coarse-grained excluded volume force mf since, due to

mesoscopic coarse-graining, the latter corresponds to a soft (often exponential) potential

that reproduces the effects of the microscopic intermolecular forces on average, hence it

does not necessarily instantaneously preserve the topological integrity of L. As shown in

[20], this leads to detrimental physical effects in the rheology of knotted (bio)polymers. The

force cf (that eliminates these spurious effects) can be considered to be the gradient of a

potential φc(r, r′) = φc(r− r′) = gδ(r− r′), where r, r′ ∈ L. The positive constant g is taken

to be adequately large in order to capture and preserve chain entanglements re ∈ L (i.e.,

contact points between chains) that are defined as

re =

∫
L−Vǫ(rL)

d|rL| rL δ(|re − rL|),

where Vǫ(rL) ∈ L is a small neighborhood around rL. A schematic demonstration of this

definition is depicted in Fig.1. So in analogy with Rb, a position vector for all Ne entan-

glements in the system can be defined Re = (r1e, r
2
e, ..., r

Ne
e ). The numerical/computational

implementation of force cf is highly technical. The particulars of the method which is an
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evolved version of the geometric approach of [32] are discussed in [20, 21]. For the purposes

of present exposition, it suffices to write the final equation governing bead-motion

iFi
k
+ eFi

k + mFi
k + dFi

k
+ tFi

k
= 0, (4)

where iFi
k
= mbd

2rki /dt
2 (with mb been the mass of each polymer bead) is the inertial force,

and the physical meaning of the other forces is as above, only now they refer to total forces

acting on polymer sections corresponding to individual beads. Notably, the drag force dFi
k

appears with opposite sign than in the Navier-Stokes equation. A key observation is that

the contact force is not present, but its effects are taken into account in the expression for

the elastic force eFk = eFk(Rb,Re), which now also depends on the number and position

of chain entanglements [20, 21]. Consequently, any method incorporating the above bead-

spring model automatically includes chain-entanglement effects.

METHOD FOR THE COMPUTATION OF TURBULENT POLYMERIC LIQUIDS

There are some strict requirements for such a method. First of all, it needs to compute

the drag force dF
k
whilst resolving the hydrodynamic interactions between beads. Since

the latter are caused by pointwise forcings, the grid requirements for their direct compu-

tation via standard finite volume solvers are (complexity wise) prohibitive. Moreover, any

approach capable of resolving the microscopic flow in between the beads needs to simulta-

neously allow the incorporation of Brownian effects into the chain dynamics. At the same

time, the method ought to resolve all turbulent fluctuations from first principles. Finally,

the whole formulation must be asymptotically exact in the limit of very small particle size.

Next, I provide an overview of the method, by presenting the dynamical equations and the

corresponding algorithmic steps, before I discuss in greater detail the specific elements of

the new formulation.

Summary of dynamical equations

In a nutshell, the method solves the coupled dynamics of a filtered Navier-Stokes equation

for the fluid, and a Coarse-Grained Molecular Dynamics, Langevin equation for the polymer
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chains. In order to compute the chain-induced hydrodynamic-interactions flow field that is

required for the evaluation of both the drag force in the Langevin equation and the subfilter

flow field in the filtered Navier-Stokes equation, the method incorporates the solution of a

Stokes equation that models the (hydrodynamic interactions) creeping flow field that (at

each instant) is in equilibrium with the large (above the filter) scale flow field. The key

equations are
∂ūi

∂xi

= 0, (5)

ρ
∂ūi

∂t
+ ρ

∂(ūiūj)

∂xj

+
∂p̄

∂xi

+ ρ
∂(u′

iu
′
j)

∂xj

− µ
∂2ūi

∂xj∂xj

− dFi
k
Gξ(x− rk) = 0, (6)

iFi
k
+ eFi

k + mFi
k + dFi

k
+ tFi

k
= 0, (7)

∂uS

i

∂xi

= 0, (8)

∂pS

∂xi

− µ
∂2uS

i

∂xj∂xj

− dFi
k
δ(x− rk) = 0, (9)

u′
iu

′
j(x) = (uS

l )i(u
S

l )j(x) =

∫
V

(uS

l )i(x− x′)(uS

l )
′

j(x− x′)Gξ(x
′)dx′, (10)

where (5) and (6) are the filtered Navier-Stokes equations, (7) is the Langevin equation for

the polymer beads, (8) and (9) are the creeping flow, Stokes equations, and (10) describes

the residual stress in (6) in terms of the local part uS

l of the Stokes velocity field uS =

uS

l + uS

g (where uS

g is the global part). The various terms in these equations are gathered

for convenience in Table I. Their detailed meaning is discussed in the sections that follow.

Filtering the forced Navier-Stokes equation

In order to start unraveling the approach, I focus first on fluid momentum, and note that

irrespective of the specific physics of turbulent fluctuations, one can always define for the

latter a length scale ξ (kξ in spectral space) for which the corresponding Reynolds number

is equal to unity, or, in other words, below ξ there cannot be any inertial flow fluctuations

(although there can be fluctuations due to a complicated creeping flow velocity field). Since

the aim here is to fully resolve the turbulence scales, one can filter the forced Navier-Stokes

equation at the ξ scale, without any loss of accuracy, as far as, turbulence physics are
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ūi i component of filtered fluid velocity

p̄ filtered fluid pressure

u′i i component of residual (subfilter) fluid velocity

u′iu
′
j residual (subfilter) fluid stress

Gξ filter function

(Rb(t),Re(t)) bead/particle and entanglement positions

dFi
k

i component of dissipative drag force on bead/particle k

iFi
k

i component of inertial force on bead/particle k

eFi
k i component of elastic force on bead k

mFi
k i component of intermolecular force on bead/particle k

tFi
k

i component of (thermal) fluctuation force on bead/particle k

uSi i component of Stokes flow field

pS pressure enforcing Stokes flow incompressibility

(uSl )i i component of local part of Stokes flow field

(uSg )i i component of global part of Stokes flow field

TABLE I.

Nomenclature of various quantities appearing in the dynamical equations

concerned (assuming, of course, that ξ = ∆x, where ∆x is the computational grid size of

the Navier-Stokes solver). Any function Gξ(x
′) that is even in x′, integrates to unity over all

space, is of order 1/ξN at the origin (where N is the space dimension), and is Gξ(x
′) ≪ 1 for

|x′| ≫ ξ is a suitable filter. Well known filters are the box, Gaussian and sharp spectral filters

[24]. For example, noting that three-dimensional filter functions are related to their one-

dimensional versions via the formula Gξ(x
′) =

∏
i=1,3

Gξ(x
′

i), the three-dimensional Gaussian

filter reads

Gξ(x
′) =

1

π3/2ξ3
e
−

|x′|2

ξ2 ,

and the three-dimensional sharp spectral filter reads

Gξ(x
′) =

sin(πx′

1/ξ)sin(πx
′

2/ξ)sin(πx
′

3/ξ)

π3x′
1x

′
2x

′
3

.
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The filtered fluid velocity becomes

ū(x) ≡ uξ(x) =

∫
V

u(x− x′)Gξ(x
′)dx′,

and one can write u = ū + u′. It is important to note that although the filtering and

differentiation operators commute, it is in general ¯̄u 6= ū. However, there are filters, and

the sharp spectral filter is an example, where ¯̄u = ū, hence u′ = 0. Assuming that such a

filter function is employed, we obtain the filtered Navier-Stokes equations for the solenoidal

velocity field ū(x)
∂ūi

∂xi

= 0,

ρ
∂ūi

∂t
+ ρ

∂(ūiūj)

∂xj

+
∂p̄

∂xi

+ ρ
∂(u′

iu
′
j)

∂xj

− µ
∂2ūi

∂xj∂xj

− dFi
k
Gξ(x− rk) = 0,

where, due to the pointwise nature of the forcing term, the delta function has now been

replaced by the filter function, and the gradient of the so called residual stress τRij ≡ −ρu′
iu

′
j

has appeared. This stress is a direct consequence of the convective nonlinearity in the

inertial force, and it ought not to be confused with the Reynolds stresses that are the result

of probabilistic (ensemble) averaging rather than spatial filtering. Indeed, the solution of this

equation is a fully developed turbulent flow that includes all the fluctuation scales. One can

apply probabilistic averaging to it in order to recover the Reynolds stresses, or any higher

order statistics as desired. The filtered equation can be solved numerically with standard

finite volume, projection methods [36, 37], hence, at this point, the key difficulties are the

computation of the forcing term by taking into account hydrodynamic interactions between

chains, and the accurate (i.e., without resort to modeling) calculation of the residual stress

τRij . These issues are addressed next.

Creeping microflow and polymer motion

In order to simplify the exposition and facilitate its computational implementation, I em-

bed it within a hypothetical computational algorithm: at time step n, i.e., at time t = n∆t,

the filtered velocity field ū(x, t), and the bead and entanglement positions (Rb(t),Re(t)) are

available. Since the aim is to resolve the turbulence fluctuations, the temporal time step ∆t

is chosen to be of the order of the fastest eddy turnover times in the turbulent fluid. Now,

due to small polymer-bead (and colloid) diameters and polymer thickness, it is expected
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that the microflow around polymer chains is always going to be a creeping flow that can

be described by Stokesian Dynamics [33]. Since, due to its diffusive nature, a creeping flow

establishes itself essentially instantaneously with respect to the much slower inertial turbu-

lence fluctuations [13], the hydrodynamic interactions and the accompanying viscous drag

on polymer chains correspond to Stokes flow modes superposed on large scale turbulence.

In other words, without loss of accuracy, the turbulence can be considered “frozen” during

the time required for the creeping flow regime to reach a steady state (or else to equilibrate)

with respect to its instantaneous velocity fluctuations ū(x, t) that are resolved by the filtered

Navier-Stokes equation. Similarly, the Stokes relaxation time τ = mb/(6πµa) (where a is the

polymer-bead radius) is very small, so, since the aim is to accurately resolve the dynamics

of inertial turbulence fluctuations that evolve at much larger time scales, one can solve the

polymer dynamics in the diffusive limit [34, 35], when the inertial force has settled to zero.

Implementing these in the balance of forces in the polymer dynamics, one obtains

dFi
k
= ζkk

′

ij vk
′

j = −eFi
k − mFi

k − tFi
k
,

which indicates that, taking into account the very small Stokes time, it is only because of

the presence of elastic and intermolecular forces that the chain velocites are allowed to “slip”

relative to ū, hence, to also experience a drag force. Here, ζkk
′

ij is the symmetric 3N × 3N

hydrodynamic-friction matrix ζ. According to this notation, this matrix is composed by N×

N , 3× 3 matrices. Hence, the upper kk′ indices point to the particular 3× 3 hydrodynamic-

friction submatrix that corresponds to beads k and k′, and the lower ij indices help pick

up one of the 9 elements of the kk′ submatrix. Moreover, vk
′

j is the j component of the

Stokesian velocity vk′ induced at bead-position rk
′
by the totality of coupling forces between

the polymer chains and the fluid. Notably, the non-diagonal nature of the hydrodynamic-

friction matrix automatically takes into account the hydrodynamic interactions between

beads. I remark for clarity that, in the ζkk
′

ij vk
′

j expression, two summations over the j and k′

repeated indices are implied. Moreover, as discussed above, the total flow velocity at bead

location rk is equal to ū(rk) + vk. For completeness, I also mention here the corresponding

equation for fluid momentum

ρ
∂ūi

∂t
+ ρ

∂(ūiūj)

∂xj

+
∂p̄

∂xi

+ ρ
∂(u′

iu
′
j)

∂xj

− µ
∂2ūi

∂xj∂xj

− ζkk
′

ij vk
′

j Gξ(x− rk) = 0, (11)
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where now three summations over j, k and k′ repeated indices are implied in the expression

for the drag force. Employing the balance of forces in the polymer dynamics, the drag force

in the filtered Navier-Stokes equation can be replaced by the sum of elastic and intermolec-

ular forces. It is important to note that, despite this substitution, the turbulence dynamics

are directly informed by hydrodynamic interaction effects, since the elastic and intermolec-

ular forces depend only on the bead and entanglement positions (Rb(t),Re(t)), and full

hydrodynamic-interaction effects are taken into account when new values for (Rb(t),Re(t))

are computed. This feature of the method is discussed next.

Returning to the hypothetical computational algorithm, and keeping in mind the above

formalism, the first task within a numerical time step is to update (Rb(t),Re(t)). This

is going to be achieved by taking into account (in an accurate way) the hydrodynamic

interactions between particles, as well as Brownian motion effects. Moreover, the polymer

numerical method (just like the projection methods employed for Navier-Stokes dynamics)

needs to be suitable for bounded computational domains with arbitrary boundary conditions.

As discussed above, it suffices to compute the Stokes flow uS(x) that is in equilibrium with

the numerical large scale turbulent velocity ū(x)

∂uS

i

∂xi

= 0,

∂pS

∂xi

− µ
∂2uS

i

∂xj∂xj

− dFi
k
δ(x− rk) = 0,

where pS(x) is the pressure field required in order to make uS(x) incompressible. There are

a number of methods available [34, 35, 38], however, I am going to base the discussion on

the approach of [35], since this method was employed in the entangled polymer dynamics

computation of [21], hence the latter reference could be consulted for various numerical

and computational details, as required. I am presenting here only the method aspects that

are relevant in the context of the present approach. After defining the hydrodynamic force

density θ(x) = dF
k
δ(x − rk), θ(x) is written as the sum of two contributions θ(x) =

θl(x) + θg(x), where the “local” density is θl(x) = dF
k
[δ(x − rk) − h(x − rk)], and the

“global” density is θg(x) =
dF

k
[h(x− rk)]. The screening function h satisfies the condition∫

V
h(x)dx = 1, where the integral is over all space and not just over the computational

domain. The force density θl(x) produces a local contribution to the velocity field uS

l (x),
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Stokes velocity U at boundary

Unbounded domain Stokes
velocity U’ at boundary

+=

Grid−resolved Stokes
velocity U’’=U−U’
at boundary

FIG. 2. Taking advantage of the linearity of the Stokes equation, one can satisfy its boundary

conditions by summing an (unbounded-domain) Stokeslet, and a grid-resolved, bounded-domain

Stokes flow satisfying appropriate boundary conditions

because the screening function depends on a parameter α that defines a length scale α−1

beyond which uS

l (x) decays exponentially to zero. In particular, uS

l (x) = Hl(x− rk) · dF
k
,

where Hl(x) is composed of the free space stokeslet (corresponding to the delta function

part) minus a smoothed free space stokeslet obtained from the analytical solution of the

Stokes equations with the forcing term given by the function θg(x) [35]. The force density

θg(x) corresponds to a global velocity field uS

g (x) that varies on the scale α−1, hence it can

be solved in bounded domains, with finite volume solvers and suitable boundary conditions

[21]. Since by linearity uS(x) = uS

l (x) + uS

g (x), the boundary conditions of uS

g (x) can be

chosen appropriately so that, when added to the uS

l (x) values on the boundary, the physical

boundary conditions for uS are satisfied. This is schematically shown in Fig.2. In the context

of the present method, it is important to note that, (a) uS

l (x) includes in an analytical way

the short-range hydrodynamic interaction effects that it is practically impossible to compute

with finite-volume, turbulent flow solvers. Notably, uS(rk) ≡ vk, i.e., the Stokes flow velocity

at polymer-bead position rk. Hence, when the velocity ū(rk)+uS(rk) is employed in order to

advect the polymer chains, the direct incorporation of full hydrodynamic effects into chain

motion is achieved, (b) the scale α−1 is not free to choose (as in rheology) but ought to be

equal to the filtering scale ξ above, i.e., ξα = 1. Why this must be the case is going to be

explained later on.
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There is a final issue with Brownian motion effects. In particular, the method just outlined

makes available the Stokes velocity field at polymer-bead positions, vki = µkk′

ij
dFj

k′
, where

µkk′

ij is the mobility matrix, i.e., the inverse of the hydrodynamic-friction matrix, µ = ζ−1.

Therefore, no explicit computation of µ takes place, and this is problematic in the context of

calculating Brownian motion effects, where knowledge of this matrix is required [33]. Hence,

one needs to employ Fixman’s method [39, 40] for solving stochastic differential equations,

since the latter is a “matrix-free” method, requiring only matrix-vector products, not the

µ matrix itself. In this way, the part of the method that updates (Rb(t),Re(t)) is now

complete.

Computation of residual stresses in the fluid momentum equation

Up till this point, a formulation of mesoscopic polymeric fluid dynamics has been devel-

oped, incorporating the governing equations of turbulence and polymer physics. The filtered

velocity ū(x, t), and the bead-entanglement positions (Rb(t),Re(t)) have been identified as

the main variables. A method for computing the latter including hydrodynamic interactions,

entanglements and Brownian motion effects has been described. The filtered Navier-Stokes

equations for ū(x, t) can be solved with finite volume, projection techniques. However, an

inspection shows that a method for calculating the residual stresses τRij ≡ −ρu′
iu

′
j is needed.

This can be done in an exact way, without introducing any approximations. Indeed, since

the filtering length scale is the inertial fluctuations cut-off ξ, turbulence is not supposed to

contribute to τRij . Moreover, as mentioned above, by choosing ξα = 1 when determining the

scale of variation α−1 of the global Stokesian flow field uS

g (x), the latter is enforced to vary

on the same scales as turbulence, hence, it cannot either contribute to τRij . Therefore, the

only velocity field that can create subfilter scale fluctuations is the local Stokesian flow field

uS

l (x). This is plausible, since, by construction, this is the short range velocity field that is

due to the delta function type of forcing. In addition, as mentioned already, there is an exact

analytical solution for this field (stokeslet) [35] uS

l (x) = Hl(x−rk) · dF
k
, hence it can readily

be filtered ūS

l (x) =
∫
V
uS

l (x−x′)Gξ(x
′)dx′, obtain the residual velocity (uS

l )
′ = uS

l −ūS

l , and

then filter the residual velocity tensor (uS

l )
′
i(u

S

l )
′
j(x) =

∫
V
(uS

l )
′

i(x−x′)(uS

l )
′

j(x−x′)Gξ(x
′)dx′.

Remarkably, since uS

l (x) decays exponentially on the length scale α−1 = ξ, one can assume

from the start that (uS

l )
′ ≈ uS

l and avoid the intermediate step of filtering uS

l . Finally, as
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discussed above, u′
iu

′
j = (uS

l )
′
i(u

S

l )
′
j, and the filtered momentum equation is therefore closed

in an exact way. Notably, at first sight, it appears that the choice of Hl(x− rk) introduces

an ad-hoc element in the computation of u′
iu

′
j, hence, also, of the fluid-momentum. How-

ever, this is not the case, since altering Hl(x − rk) affects (via hydrodynamic interactions)

the polymer-fluid coupling force dF too, so that the total effect of these two terms on the

dynamics of the fluid does not depend on the choice of the smoothing kernel. In this way,

the algorithm for evolving the second key variable ū(x, t) is also complete. This concludes

the development of the method.

Algorithmic information flow chart

Based on the above, the information flow chart of the algorithm is as follows:

(1) Specify initial and boundary conditions for ūi, (Rb(t),Re(t)), and all other physical

quantities.

(2) Increment time by the computational time step.

(3) Employing ūi and (Rb(t),Re(t)), solve the Stokes equations, and recover the subfilter,

creeping flow field uS

i , that corresponds to the hydrodynamic interactions between chains.

(4) Employing the Stokes flow field uS

i , and the large scale flow field ūi, update (Rb(t),Re(t)),

and polymer related quantities.

(5) Employing the Stokes flow field uS

i , compute the residual stresses u′
iu

′
j in the filtered

Navier-Stokes equation.

(6) Employing the residual stresses u′
iu

′
j, update the filtered velocity field ūi.

(7) Repeat step (2) until final time.

EPILOGUE

Turbulence and polymer physics are two of the most complex topics in statistical physics.

Their combination in various applications (e.g., polymer drag reduction in boundary layers,

grid turbulence, pipe or channel turbulent complex-fluid flows) requires powerful numerical

and computational methods for technological development and design. The present paper
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provides an asymptotically exact algorithm for the calculation of such flows, that is physi-

cally complete, and can be employed to model flows of arbitrary polymer volume fractions

and fluid inertia. Indeed, due to the accurate coupling of fluid and polymers/colloids, this

method can be directly employed in the computation of laminar and unstable complex-fluid

flows.

A key feature of the present approach is that the computation of the Stokesian flow field

acts as a type of subfilter flow modeling that enables the (physically complete) evolution of

both polymer chains and filtered velocity field. In this context, it is the large separation of

time scales between diffusive creeping flow modes and inertial turbulence fluctuations that

makes this subfilter flow modeling accurate. A quantitative measure of the validity of the

scale-separation hypothesis is the ratio between the Reynolds numbers in the polymer (Rep)

and Kolmogorov (Reη) range of scales, i.e. the smallest this number, the more justified

the assumption of neglecting fluid inertia in the flow around the chains is, and the more

accurate the calculations become. Employing the symbol η for the Kolmogorov scale and lp

for the typical polymer scale, and using as characteristic velocity the velocity fluctuation at

the Kolmogorov scale, one obtains Rep = (lp/η)Reη (where Reη ≈ 1). In particular [24], for

a turbulent flow in air with large-scale eddy velocity u = 2 m/s, and integral length scale

l = 0.3 m, it is Re = ul/ν ≈ 0.5 × 105, and η = 0.1 mm. On the other hand [21], for PEO

polymer with molecular weight M = 1 × 106 Da, the smallest mesoscopic scale is Kuhn’s

(correlation) length bK = 7.37 × 10−7 mm, and the largest is the (equilibrium) chain size

Rc = 3 × 10−4 mm. Employing lp = bK gives Rep/Reη = 7.37 × 10−6, and lp = Rc gives

Rep/Reη = 3 × 10−3. Hence in both most favourable and adverse cases, Rep/Reη ≪ 1,

and the method has an asymptotic validity. It is important to note that, indeed, the equi-

librium chain length Rc is the largest polymer scale when it comes to Reynolds number

considerations. This is not to ignore the fact that the flow can extend chains to much larger

than Rc lengths. However, the Reynolds number requires a length csale that characterizes

the degree at which the chain appears like an obstacle in the flow, and, as Zimm theory

of hydrodynamic interactions shows, the uniform (in the statistical sense) occupation of a

certain fluid volume by the chain is required in order for the hydrodynamic interactions to

couple the corresponding polymer parts together and make them appear like a solid object

to the flow [1]. When a polymer extends, the chain is out of equilibrium and is not free to
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wander, hence the above effect is present only within Pincus tension blobs [1] of scale lt < Rc

(lt is the characteristic scale of the beads). Certainly, the above picture applies to dilute

systems; as the system becomes dense, increasing polymer volume fraction is accompanied

by decreasing hydrodynamic screening length, hence due to the fact that hydrodynamic

interactions are screened over a larger range of scales, Zimm theory is replaced (at large

scales) by Rouse theory, resulting in smaller lp values (that are more favourable in justi-

fying the scale-separation hypothesis). Finally, it is important to note that the discussed

scale-separation assumption is the only hypothesis of the formulation, and there are no

other limitations regarding polymer volume fraction (since the algorithm models both single

chains and polymer entanglements) or flow inertia (since the algorithm models both laminar

and turbulent flows).

Certainly, computational complexity is of great concern with respect to the application

of this method to realistic flows. Hence, the availability of parallel finite volume turbulent

flow solvers, as well as the O(N) character of the Stokesian dynamics method of [35] are

important features. Additional algorithmic complexity improvements could be made in

the future. Certainly, to a certain extent, computational modeling needs also to be ap-

plied. For example, one can start by having the polymers interact with an inertial range of

limited extension in wavenumber space, or by reducing the number of beads per polymer

chain. Indeed, the coarse-grained polymer physics model developed in [21] requires only

material constants as input, and by automatically adjusting all its dynamical parameters

(in a rational way) to the chosen degree of coarse-graining, it becomes very suitable for

experiments with the degree of resolution of polymer dynamics or the specific polymer

material employed. Definitely, complexity issues are intertwined with numerical stability

issues and volume fraction levels. Regarding the former, and since the polymer time scales

are much faster than the turbulent flow time scales, the time step is mostly restricted by

polymer physics. For coarse-grained molecular dynamics, the latter dictate that the spring

relaxation time must be resolved by the computation. For PEO polymers with molecular

weight M = 1 × 106 Da in a good solvent, the polymer model of [21] gives a spring relax-

ation time 100 times smaller that the diffusion time step of a finite volume solver that fully

resolves velocity fluctuations in a turbulent flow with Taylor Reynolds number Reλ = 70.

Phantom chain bead-spring computations done with the semi-implicit predictor corrector
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scheme of [41] are unconditionally stable. However, entangled chain dynamics algorithms

implement the explicit midpoint method of Fixman [21], which needs a significantly smaller

than the spring relaxation time step in order to avoid numerical instability due to polymer

extension beyond the maximum chain length in flow areas of strong extensional stretching.

Since turbulent flow solvers are highly optimized, it is not expected that the turbulent part

of the computations is going to be a limiting factor in actual computations. On the other

hand, the number of beads/particles (i.e. their volume fraction) required for the method to

illustrate important physics will most certainly be. It is well known, that very small polymer

concentrations of the order of a ten parts per million by weight can lead to polymer drag

reduction phenomena. However, due to the computational complexity of polymer molecular

dynamics, a direct numerical computation of actual experimental situations is not possible.

Instead, significant experimentation with material properties of polymer chains and solvents,

system size and flow field type would be necessary in order to delineate a threshold beyond

which the polymers would start having a nontrivial effect in a particular flow. The latter

would be a significantly easier task for the (computationally less complex) case of colloidal

fluids, especially if the Brownian motion effects are switched off.

In another milieu, recently developed mesoscopic models of superfluid dynamics [42]

have stressed the similarity of the latter with polymeric fluids. Because of this similarity, a

variant of the present method could, in the future, be also applied to superfluid dynamics.
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