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Abstract

In this paper two strategies are proposed to de-orbit up to 10 non-
cooperative objects per year from the region within 800 and 1400 km altitude
in Low Earth Orbit (LEO). The underlying idea is to use a single servicing
spacecraft to de-orbit several objects applying two different approaches. The
first strategy is analogous to the Traveling Salesman Problem: the servicing
spacecraft rendezvous with multiple objects in order to physically attach a
de-orbiting kit that reduces the perigee of the orbit. The second strategy
is analogous to the Vehicle Routing Problem: the servicing spacecraft ren-
dezvous and docks with an object, spirals it down to a lower altitude orbit,
undocks, and then spirals up to the next target.

In order to maximise the number of de-orbited objects with minimum
propellant consumption, an optimal sequence of targets is identified using a
bio-inspired incremental automatic planning and scheduling discrete optimi-
sation algorithm. The optimisation of the resulting sequence is realised using
a direct transcription method based on an asymptotic analytical solution of
the perturbed Keplerian motion. The analytical model takes into account the
perturbations deriving from the J2 gravitational effect and the atmospheric
drag.
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1. Introduction

Since the beginning of the space era, humankind have put into orbit over
10,000 objects (Rossi & Valsecchi, 2006). Only 6% of these are active satel-
lite while the rest are space debris (Rossi & Valsecchi, 2006). The growth of
space debris population represents a collision threat for satellite and manned
spacecraft in Earth orbit. Recent studies have concluded that regions within
Low Earth Orbit (LEO) have already reached a critical density of objects
which will eventually lead to a cascading process known as the Kessler syn-
drome (Kessler et al., 2010). It is expected for the LEO debris population
to increase by approximately 30% in the next 200 years (Rossi & Valsec-
chi, 2006; Hildreth et al., 2014). The Inter-Agency Space Debris Coordina-
tion Committee has issued guidelines to mitigate the growth of space debris
(IADC et al., 2007). However it has been proven that compliance with these
recommendations will not stop the exponential growth. Liou & Johnson
(2008) have indeed proved that, under the assumption that no spacecrafts
are launched after December 2005, the debris population would still grow,
driven by collision in the 900-1000 km altitude range. The active removal
of five to ten large objects per year is required to stabilise the population
(Liou & Johnson, 2008). Since in a no-further-release scenario collisions are
the only reason for the growth of debris population, and since collision prob-
ability is a function of the object’s cross section area, large objects are the
main candidates for active removal (Virgili & Krag (2009)). Different meth-
ods have been proposed for removal of debris in LEO. These methods can be
contact-less method, such as the Ion-Beam Shepherd (Bombardelli & Pelaez,
2011), lasers and solar concentrator (Vasile et al., 2010), or based on a phys-
ical contact with the spacecraft using throw-net, harpoon (Wormnes et al.,
2013), clap or robotic arm. Mainly, the objective of the contact methods is
to bring the space debris into a disposal or a re-entry orbit together with the
servicing spacecraft. However, the robotic arm method can be used to attach
a de-orbit device on the space debris, and then, the disposal of the debris
will be performed in a controlled manner using this de-orbit kit (Kumar et
al., 2015).

Different scenarios for the active removal of space debris have been pro-
posed in the literature. Castronuovo (2011) presents a mission for the re-
moval of debris from Sun-synchronous orbit. A servicing spacecraft carrying
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a number of de-orbiting devices is used to remove 35 objects from this region
in 7 years. The spacecraft uses chemical propellant and is serviced 7 times
during the mission time in order to be resupplied with propellant and more
de-orbiting devices. Braun et al. (2013) present a study in which different
scenarios are considered for chemical or electric propelled servicing spacecraft
and for the use of de-orbit kits device or direct transfer of the objects on a
disposal orbit. The targets are identified using a priority criterion based on
the probability of a catastrophic collision and on the objects’ masses. The
sequence of targets to be removed is then computed using a brute-force ap-
proach in which each possible permutation is simulated. Peterson (2012)
identifies desirable targets based upon the probabilistic likelihood of objects
contributing to the debris field. Both an impulsive and a low thrust missions
are studied, with a limit total available ∆V assigned to them. ∆V analysis
for transfer between object is mainly based on the change in the right as-
cension of the ascending node and no optimisation or identification of target
sequence is performed. Stuart et al. (2015) present an automated procedure
to generate route plans for an active debris removal campaign based on Ant
Colony Optimization (ACO) combined with auction and bidding processes.
The heuristic of the ACO is similar to the Physarum algorithm presented in
this paper. Stuart formulates the problem as a typical multi-vehicle routing
problem (MVRP) employing ACO to create preliminary encounter tours and
to determine the total number of spacecrafts required to complete mitigation
tasks. Auction and bidding process are used to coordinate the operation of
the debris-mitigating satellites for both pre-mission planning and real-time
adjustments to baseline designs. Finally Olympio & Frouvelle (2014) con-
sider space debris on Sun-synchronous orbits. A Lambert’s problem with J2
perturbation is used to compute the cost of all the debris-to-debris transfers
and a branch-and-prune algorithm is used to construct the target sequence.
The transfers between objects in the sequence is then optimised using an in-
direct method for the low-thrust transfers. The considered propulsion system
has a thrust amplitude ranging from 0.5 N to 10 N for a 1000 kg spacecraft.

This paper starts from previous work by the authors Zuiani & Vasile (2012)
on the multi-objective optimisation of de-orbiting sequences for expended
satellites and proposes two strategies to automatically plan active debris
removal missions in which a single servicing spacecraft, equipped with an
electric engine, removes multiple objects from LEO. The underlying optimal
control problem defining the transfer between pairs of objects is solved with a
recently developed approach based on asymptotic analytical solutions of the
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Keplerian motion under constant acceleration and using surrogate models for
the evaluation of the cost of the transfer in order to reduce the computational
burden of the combinatorial algorithm.

The paper starts with a description of the considered ADR strategies in
Sec. 2; then the targets selection method used is addressed in Sec. 3. The
discrete decision making algorithm for the object sequence selection and the
low-thrust transfer model are described in Sec. 4 and 5. The obtained results
are presented in Sec. 7, and some final remarks conclude the paper.

2. Active debris removal strategies

In this paper, two strategies to actively remove objects from LEO are
proposed and studied. These two strategies are here called the Deorbit-
ing Traveling Salesman Problem (TSP) and the Deorbiting Vehicle Routing
Problem (VRP).

The Deorbiting TSP is analogous to the classic Traveling Salesman Prob-
lem: a servicing spacecraft (chaser) rendezvous with multiple objects (tar-
gets) in order to physically attach a de-orbiting system that reduces the
altitude of the perigee of the orbit of the target down to 300 km.

The Deorbiting VRP is analogous to the classic Vehicle Routing Problem:
a servicing spacecraft rendezvous with an object, grabs it and spirals down
to a circular disposal orbit with an altitude of 300 km. Once this orbit is
reached, the chaser disengages with the target and moves to the next target.
The disposal orbit can be seen as the depot of a typical VRP.

Fig. 1 illustrates the different mission phases of the two proposed strate-
gies.

3. Target selection

A catalog of the current objects in LEO is regularly maintained by the
North American Aerospace Defence Command (NORAD). Each object in the
catalog is identified by its Two-Line Elements (TLE) set, defining its orbital
parameters at a given epoch. For this work, TLE of all objects characterized
by perigee altitude hp ≥ 800 km and apogee altitude ha ≤ 1400 km are taken
from space-track.org. In order to target objects more likely to cause collision,
only TLE characterized by Radar Cross Section (RCS) > 1 are considered.
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Figure 1: Mission phases of the two studied ADR strategies.

The Radar Cross Section is a measure of how detectable is an object with
a radar; object with RCS > 1 are classified as large. Up to 721 objects
characterized by hp ≥ 800 km, ha ≤ 1400 and RCS > 1 are found; their
distribution in term of semimajor axis vs. inclination and semimajor axis vs.
right ascension of the ascending node, Ω, is shown in Fig. 2.

The potential 721 target objects are then further selected based on two
main criteria: the right ascension of the ascending node drift due to the
second zonal harmonic of the gravity J2 and the Criticality of Spacecraft
Index (CSI) (Rossi et al., 2015). Fig. 2 shows that Ω is widely spread. Low-
thrust maneuvers to change the right ascension are particularly expensive
and require long time when compared to maneuvers to change other orbital
elements. Ruggiero et al. showed that changing 1 degree of right ascension
requires 10 days when using optimal thrust angle for the change of Ω (Rug-
giero et al., 2011). In this paper the change of Ω is performed by taking
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Figure 2: Semimajor axis, inclination and right ascension of objects in LEO characterized
by hp ≥ 800 km, ha ≤ 1400 and RCS≥1.

advantage of the natural rate of nodal regression due to J2 and its depen-
dence on altitude. Transferring the spacecraft to lower or higher altitude
changes the rate of Ω relative to the initial orbit so that a shift in Ω can
be realised (Pollard, 2000). The variation of Ω of the servicing spacecraft
depends on its altitude and inclination i according to (Vallado & McClain,
2001):

Ω̇ = −3

2
nJ2

(
R⊕

a(1− e2)

)2

cos i (1)

where n is the orbit’s mean motion, R⊕ the mean Earth’s radius and a and
e are the orbit’s semimajor axis and eccentricity. The effect of a change
of semimajor axis on the variation of Ω is greater when the inclination is
smaller, because of the cos i term in the Eq. (1).

A further classification of objects with low inclination is realised based on
the Criticality of Spacecraft Index (CSI). The Criticality of Spacecraft Index
expresses the environmental criticality of objects in Low Earth Orbit taking
into account the physical characteristics of a given object, its orbit and the
environment where this is located (Rossi et al., 2015). We did not compute
the CSI for the object we selected but we compared their location, in the
inclination-perigee/apogee space, against the location, in the same space, of
the most critical objects reported in the work of (Rossi et al., 2015). Fig. 3
shows the perigee and the apogee altitudes of the 721 objects characterized
by hp > 800 km and ha <1400 km as a function of the inclination. It can
be compared with Figure 8 in Rossi et al. (2015) to see that the 25 circled
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objects in Fig. 3 are in the same region as the 100 most critical objects in
terms of CSI. These 25 objects are the ones selected for this study. Their
orbital elements at epoch t0 = 30 May 2015 are reported in Table 1 and
shown in Fig. 4.
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Figure 3: Perigee and apogee altitude of objects in LEO with hp > 800 km, ha < 1400
and RCS>1.

Semimajor axis [km]

7465 7470 7475

E
c
c
e
n
tr

ic
it
y
 [
d
e
g
]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Semimajor axis [km]

7465 7470 7475

In
c
lin

a
ti
o
n
 [
d
e
g
]

63.38

63.385

63.39

63.395

63.4

63.405

63.41

63.415

63.42

Semimajor axis [km]

7465 7470 7475

Ω
 [
d
e
g
]

0

50

100

150

200

250

300

350

Semimajor axis [km]

7465 7470 7475

ω
 [
d
e
g
]

0

50

100

150

200

250

300

350

400

Figure 4: Orbital elements of the selected objects.
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Table 1: List of selected objects.

ID a [km] e i [deg] Ω [deg] ω [deg] E [deg]
1 39012 7468.3502 0.0083 63.3824 237.3044 0.8990 359.2169
2 39016 7471.1909 0.0097 63.3825 240.6863 6.5523 353.6732
3 39015 7472.5431 0.0095 63.3828 246.1591 5.6338 354.5722
4 39011 7468.3501 0.0083 63.3835 237.2911 0.9268 359.1897
5 39013 7468.3457 0.0083 63.3851 236.4881 0.7138 359.3978
6 40113 7472.7134 0.0037 63.4023 316.5715 13.7191 346.4819
7 40110 7468.3365 0.0030 63.4026 313.7710 3.4835 356.6392
8 40114 7474.0679 0.0035 63.4027 317.0490 12.1346 348.0508
9 40111 7468.3378 0.0030 63.4036 313.9539 3.3535 356.7684
10 36417 7468.8627 0.0178 63.4045 319.3205 1.2414 136.7021
11 40109 7468.3382 0.0030 63.4048 313.0739 3.0576 357.0626
12 36418 7469.6579 0.0177 63.4050 318.8647 0.8968 90.3057
13 36415 7468.3664 0.0181 63.4057 313.6971 1.5540 358.6008
14 36413 7468.3637 0.0180 63.4064 315.3091 1.5248 358.6278
15 36414 7468.3642 0.0180 63.4079 313.8604 1.2339 358.9091
16 40340 7468.3186 0.0010 63.4084 240.6788 293.4985 66.5005
17 40343 7471.8760 0.0020 63.4093 245.3040 3.4906 356.6256
18 40342 7473.2452 0.0019 63.4096 240.8979 359.1859 0.9133
19 40339 7468.3132 0.0010 63.4097 239.8082 294.9368 65.0721
20 40338 7468.3152 0.0010 63.4108 239.8075 293.4250 66.5729
21 39243 7471.6919 0.0076 63.4150 32.8672 11.6594 348.6165
22 39240 7468.3470 0.0065 63.4154 24.7900 3.7401 356.4085
23 39244 7473.0697 0.0075 63.4156 33.7082 10.7899 349.4691
24 39239 7468.3482 0.0065 63.4158 24.7599 3.6762 356.4729
25 39241 7468.3452 0.0065 63.4170 23.8973 3.3104 356.8339

4. Incremental planning and scheduling algorithm

The automatic planning and scheduling algorithm used in this paper is
based on a single objective discrete optimisation algorithm which takes inspi-
ration from the biology of the single cell slime mold Physarum Polycephalum.
The Physarum Polycephalum organism has been endowed by nature with a
simple but powerful heuristic that can solve complex discrete decision making
problems (Nakagaki et al., 2000; Adamatzky et al., 2011; Hickey et al., 2008;
Tero et al., 2006, 2008). In its main vegetative state, plasmodium state, the
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Physarum Polycephalum forms a network of veins called pseudopodia. This
network of veins spreads searching for food sources evolving and reshaping
with time to find the optimal shape that optimises the energy required to
feed the organism (Tero et al., 2008). The flux on the veins varies depending
on the distance between the food source and the center of the Physarum.
For example, the shortest is the path, the largest is the flux and viceversa.

The Physarum algorithm works modeling the discrete decision making
problems into a decision graphs were nodes represent the possible decisions
while arcs represent the cost vector associated with decisions. The mecha-
nism of Physarym is analogous to the most commonly known Ant Colony
Optimisation algorithm (Hickey et al., 2008). The decision graph is incre-
mentally grown or explored by Virtual Agents using the Physarum-based
heuristic. Unlike branch and prune algorithms, that use a set of determin-
istic branching and pruning heuristics, the Physarum algorithm uses proba-
bilistic heuristics to decide to branch or prune a vein. To be more specific,
branches are never really pruned but the probability of selecting them falls to
almost zero. The Physarum algorithm has already been tested on a variety
of combinatorial problems with good results (Adamatzky et al., 2011; Masi
& Vasile, 2014; Romero et al., 2014)

In order to apply the Physarum algorithm, the problem is modeled us-
ing a tree-like topology. Starting from a dummy node, that represents the
root node, each following children nodes of the root node represent the first
servicing task, and its children represent the successive servicing tasks. The
decision graph is incrementally grown with time by the virtual agents using
the Physarum-based heuristic. Each current node becomes the parent of the
following children until an end condition is reached and one full solution is
generated. Each arc connecting a parent with a child has an associated cost,
evaluated making use of the models presented in Sec. 5.

The two ADR strategies studied in this paper have different stopping
conditions. When the planning algorithm reaches the stopping condition a
full solution is produced. For the Deorbiting TSP, the stopping condition
is obtained when the maximum mission time Tmax is reached or when the
number of installed de-orbit kits reaches the value NKits. NKits represents the
number of kits that can be stored on-board the chaser. For the Deorbiting
VRP, the stopping condition is reached when the total mission time is equal
to Tmax.

In this section a brief description of the Physarum’s mathematical model
is presented; for more details on Physarum algoirthm the interested reader
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can refer to Vasile & Becerra (2014). Note that, in this work, the Physarum
algorithm was implemented in its unidirectional version. The mathematical
model of Physarum consists mainly of two parts: the decision network explo-
ration and decision network growth. The main parameters of the Physarum
solver are summarised in Table 2 and the complete pseudocode is provided
in Algorithm 1.

Table 2: Main setting parameters for the Physarum solver.

m Linear dilation coefficient, see Eq. (3)
ρ Evaporation coefficient, see Eq. (4)
GF Growth factor
Nagents Number of virtual agents
NGeneration Number of generations
pram Probability of ramification
rini Initial vein’s radius
λ Weight on ramification, see Eq. (6)

4.1. Decision network exploration

The decision network exploration is based on the flux through the network
of Physarum veins. The flux of the Physarum veins can be modelled as a
classical Hagen-Poiseuille flow in cylindrical ducts with variable diameter
that varies with time (Hickey et al., 2008; Tero et al., 2006, 2008):

Qij =
πr4

ij

8µ

∆pij
Lij

(2)

where Qij is the flux between i and j, µ is the dynamic viscosity, rij is the
radius of the vein, Lij is the length of the vein, and ∆pij is the pressure
gradient. In this paper, Lij is substituted by the cost of the transfer between
two subsequent targets, ∆V . For a better understanding of these parameters,
they have been illustrated by means of a simple graph in Fig. 5.

The variation of the flux through the veins occurs due to the change with
time of the radii of the veins. These changes are produced mainly by two
processes: dilation and contraction of the veins. The dilation of the veins
is caused by the increment of the flowing nutrients throughout a vein. The
dilation process can be modelled using a monotonic function of the flux:
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Algorithm 1 Incremental Physarum Solver

1: initialize m, ρ, GF , Nagents, pram, λ
2: for each generation do
3: for each virtual agent do
4: if EndConditoin = true then
5: Create a new full solution from the current node
6: Continue
7: end if
8: if ν ∈ U(0, 1) ≤ pram then
9: Using Eq. (6) create a new decision path, building missing links

and nodes
10: else
11: Move on existing graph using Eq. (5).
12: end if
13: end for
14: Contract and dilate veins using Eqs. (3), (4)
15: if rij exceeds upper radius limit then
16: Block radius increment
17: end if
18: Update fluxes and probabilities using Eqs. (2), (5)
19: if restart condition then
20: Update veins’ radii
21: Update fluxes and probabilities using Eqs. (2), (5)
22: end if
23: end for

d

dt
rij

∣∣∣∣
dilation

= f (Qij) (3)

On the other hand, the contraction of the veins is caused by an evaporation
effect and can be modelled as linear function of the radius:

d

dt
rij

∣∣∣∣
contraction

= −ρrij (4)

where ρ ∈ [0, 1] is a pre-defined evaporation coefficient. Then, the proba-
bility associated with each vein connecting the node i and the node j can

11



Figure 5: Physarum solver decision network; thicker arrows represent higher fluxes. In
this example Q12 > Q14 → P12 > P14

be computed using a simple adjacency probability matrix based on fluxes as
follow:

Pij =

{
Qij∑

j∈Ni
Qij

if j ∈ Ni

0 if j /∈ Ni

(5)

where Ni is the set of neighbouring veins to a node i.

4.2. Growth of the decision network

The incremental growth of the decision network is based on a weighted
roulette. At every node of the tree, each virtual agent can generate a new
branch or move along an existing one. At each node, the virtual agent has
a probability pram of ramification towards new nodes that are not yet linked
with the current one. On line 5 of Algorithm 1, a random number v is drawn
from a uniform distribution U(0, 1) and the condition v < pram is verified.
Assuming that the agent is at node i, if ramification is the choice, the virtual
agent evaluates the set of possible new branches and assigns a probability pij
of constructing a new link from the current node i to a new possible node
j ∈ N̄i, where N̄i is the set of unlinked nodes (for example nodes 3 and 4 in
Fig. 6), according to:

pij ∝
1

Lλij
(6)

where λ is a pre-defined weight exponent. Fig. 6 illustrates the concept
of possible ramification where dotted lines represent feasible branches not
yet existing. If a virtual agent is at node 1, it has a probability pram of
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ramification towards the unlinked nodes 3 and 4. If the virtual agent decides
to create a new link, a new node is selected according to Eq. (6) (line 6 of
Algorithm 1).

If a set of linked nodes is available, the virtual agent can decide, with
probability (1−pram), to traverse the existing branches in the neighbourhood
Ni (line 8 of Algorithm 1). In the case illustrated in Fig. 6 when virtual agent
is at node 1, it can explore the already linked nodes 2 or create new links to
the unlinked nodes 3 and 4.

Figure 6: Illustration of the ramification towards a new node.

4.3. Problem formulation

As introduced in Sec. 2, the two proposed ADR strategies are analogous
to the typical TSP and VRP. In the TSP the goal is to minimise the total
path length to visit every town/node once and only once. In the Deorbiting
analogous, the goal is to minimise the total ∆V to execute all servicing tasks
only one. In contrast to the regular TSP, where the cost of each arc connect-
ing two nodes is constant, in the ADR case, the cost of the arc depends on the
mass of the chaser, which varies with time. In fact, the mass of the servicing
spacecraft depends on the propellant mass, that is progressively consumed
to rendezvous with all the satellites, and on the number of de-orbit kits, that
are progressively used to perform de-orbiting. The ADR analogous has other
key distinctive features:

- Only nT tasks among Ss are performed, where Ss is the set of targets
to be serviced. nT depends on the number of de-orbit kits available
on-board the chaser.

- There is a constraints on the transfers time (ToF ) between tasks so
that ToF ∈ [ToFmin, T oFmax].
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- There is a waiting time at each target. This waiting time is the time
required to performed the servicing, tservicing.

The Deorbiting VRP is equivalent to the classic VRP, where after each
service, the vehicle (the chaser in our case) has to return to the depot (the
disposal orbit) before proceeding to the next service. Similar to the TSP,
the goal of the VRP is to minimise the total distance covered and to conduct
every task once and only once. The following features have been added to
the ADR analogous:

- There is a global duration constrain on the total mission time,
tmission < Tmax.

- There is a local duration constrain on the transfers time between tasks
so that ToF ∈ [ToFmin, T oFmax].

As stated previously in this section, the decision graph is incrementally
grown by the virtual agents where each node of the graph represents a de-
cision. Each of the nodes are connected by arcs, and these arcs have an
associated cost, evaluated making use of the model presented in Sec. 5. This
cost is the ∆V associated to the transfer between targets. In the Physarum
algorithm, the variable Lij in Eqs (2) and (6) is replaced by ∆V .

Both for the TSP and VRP problems, the Physarum algorithm evaluate
the cost of the low-thrust transfer between satellites using a surrogate model,
rather than the actual low-thrust model. This is justified by the combinato-
rial complexity of the problem and by the computational time required by
the computation of the low-thrust transfer. To justify this method, an esti-
mation of the total number of required operations and of the corresponding
computational time, using the low-thrust model, is given in the following.
Considering the set of 25 possible targets, the number of combinations of
target-to-target transfer arcs can be computed using the formula n! /(n−k)!,
where n=25 and k is the number of objects of the subset. In this case k = 2,
giving a total number of 600 different transfer arcs. Considering a time of
flight for the transfer from 1 to 180 days and a time step of 0.25 days, the
total number of possible time of flights for each transfer arc is 716. There-
fore, the total number of transfer arcs that should be computed is 600*716
= 429600. Hence, assuming that the low-thrust solver takes on average 25
sec to compute a transfer arc on an Intel(R) Core(TM) i7-3770 CPU 3.4GHz
and 8GB RAM, the total computational time required to perform an exhaus-
tive assessment of the search space is approximately 1243 days. Therefore,
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in order to reduce the computational time required by the Physarum in the
evaluation of the cost of the transfer arcs, a surrogate model of the low-thrust
transfers is used (Sec. 5.6.1). The evaluation of the surrogate model has an
almost instantaneous computational time cost, resulting in a considerable
reduction on the computational time.

5. Low-thrust transfer model

In this section the method used to compute the ∆V required to assess
the cost of the transfer for the Deorbiting TSP and the Deorbiting VRP is
described.

5.1. Debris dynamical model

In this work, the mean elements at epoch t0 of each target are taken from
the TLE catalog (Hoots et al., 1980) and are propagated forward in time
considering only the J2 effect, since drag is not relevant at the considered
altitude. The effect of drag is neglected also for the transfer between two
targets in the Deorbiting TSP but is taken into account in the deorbiting
and orbit raising of the Deorbiting VRP. Neglecting the atmospheric drag
for the propagation of the orbits of the target objects is justified by the small
variations of a and e, due to drag, over a time interval of two years (Fig. 7).
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Figure 7: Variation of semimajor axis and eccentricity of the target objects during a time
period of two years.

For each possible target, therefore, a, e and i are assumed to be constant,
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while Ω and ω change according to (Vallado & McClain (2001)):

Ω(t) = Ω(t0)− 3

2
n̄J2

(
R⊕

p

)2

cos i(t− t0) (7)

ω(t) = ω(t0) +
3

2
n̄J2

(
2− 5

2
sin2 i

)2

(t− t0) (8)

where

n̄ = n

[
1 +

3

2
J2

(
R⊕

p

)2√
1− e2

(
1− 3

2
sin2 i

)]
(9)

5.2. Time independence of the transfers

The rate of change of Ω and ω due to J2 is different for each selected target
object and depends on their orbital elements. During the transfer from any
object A to any object B, realised in a time of flight ToF , the chaser has to
correct Ω and ω by an amount:

∆Ω(t0, T oF ) = ΩB(t0 + ToF )− ΩA(t0) (10)

∆ω(t0, T oF ) = ωB(t0 + ToF )− ωA(t0) (11)

The different rates of change of Ω and ω for the two objects A and B
result in different values of ∆Ω and ∆ω when transferring from one object
to another at different epochs. This means that, for t1 6= t0:

∆Ω(t0, T oF ) 6= ∆Ω(t1, T oF ) (12)

and
∆ω(t0, T oF ) 6= ∆ω(t1, T oF ) (13)

As a consequence, transfers realised at different starting epochs would
be characterised by different ∆V ’s. Consider now each combination of two
objects A and B and the quantities:

(14)∆ΩAB(t0, T1y) = [ΩA(t0 + T1y)− ΩB(t0 + T1y)]− [ΩA(t0)− ΩB(t0)]

(15)∆ωAB(t0, T1y) = [ωA(t0 + T1y)− ωB(t0 + T1y)]− [ωA(t0)− ωB(t0)]
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Figure 8: ∆ΩAB(t0, T1y) and ∆ωAB(t0, T1y) for the 600 combinations of transfers resulting
from the 25 selected objects.

where t0 is a given epoch and T1y = 1 year. The quantities in Eqs. 14 and 15
are shown in Fig. 8 for all the 600 combinations of transfers resulting from
the 25 selected objects.

Figures 8 show that the differences in ∆Ω are limited to less than 3.28
deg over one year and those of ω are limited to less than 2.53 degrees over
the same period of time. Using the transfer model described in Sec. 5.3, the
∆V required to realise the following two transfers can be computed:

• aA = 7470 km→ aB = aA

• eA = 0→ eB = eA

• iA = 63 deg→ iB = iA

• ΩA(t0)→ ΩB(t0 + ToF )

and

• aA = 7470 km→ aB = aA

• eA = 0→ eB = eA

• iA = 63 deg→ iB = iA

• ΩA(t0 + T1y)→ ΩB(t0 + T1y + ToF )
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The worst possible transfer was considered, that is the one corresponding
to:

[ΩB(t0 + T1y)− ΩA(t0 + T1y)]− [ΩB(t0)− ΩA(t0)] = 3.28 deg (16)

Fig. 9 shows the difference between the ∆V ’s required to realise the two
transfers defined here above. The difference in ∆V is plotted against the
ToF . The difference in the ∆V ’s required to realise transfers with different
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Figure 9: Difference in ∆ for transfers computed at different epochs (t0 or t0 + T1y.

values of ∆ω are expected to be lower than those in Fig. 7 given the smaller
values of the difference in ∆ω. Given the result in Fig. 9 the time indepen-
dence assumption was applied to the calculation of all the transfers in the
remainder of this paper. This assumption allows one to represent the ∆V
only as a function the mass of the target and the ToF (see Sec. 5.6.1).

5.3. Transfer model

The state X of the spacecraft is modeled using non-singular equinoctial
elements (Battin, 1999):
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X =



a

P1 = e sin (Ω + ω)

P2 = e cos (Ω + ω)

Q1 = tan i
2

sin Ω

Q2 = tan i
2

cos Ω

L = Ω + ω + θ

(17)

In the previous expressions L is the true longitude and θ represents the
true anomaly. The transfers between objects are optimised in order to reduce
the total propellant consumption, or ∆V . The acceleration aLT exerted by
the thruster on the spacecraft is expressed in the spacecraft body-fixed radial-
transverse-normal reference frame as (Zuiani & Vasile (2015)):

aLT =


ar = ε cos β cosα

aθ = ε cos β sinα

ah = ε sin β

(18)

where ε is the acceleration magnitude, α is the in-plane azimuth angle and
β is the out-of-plane elevation angle.

Each orbit revolution of the servicing spacecraft is divided into four sec-
tors: two thrust arcs (at perigee and apogee) and two coast arcs. During
each thrust arc the value of α and β are kept constant. In order to consider
situations in which thrusting at perigee and apogee could not be the optimal
choice, an additional decision parameter that produces a shift along the or-
bit of the center of the perigee thrust is introduced. The control variables to
optimise are, therefore:

- dLp, amplitude of the perigee thrust arc;

- αp, azimuth angle of the thrust vector during the perigee thrust arc;

- βp, elevation angle of the thrust vector during the perigee thrust arc;

- η, angle defining the shift of the first thrust arc (perigee thrust arc)
with respect to the perigee;

- dLa, amplitude of the apogee thrust arc;

- αa, azimuth angle of the thrust vector during the apogee thrust arc;

- βa, elevation angle of the thrust vector during the apogee thrust arc.
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On each thrust arc, the state of the servicing spacecraft is propagated
using an averaged analytical solution of the perturbed Keplerian motion.
The averaged analytical propagator is based on a set of analytical formulae
to propagate the perturbed Keplerian motion over a complete revolution; the
averaged orbital elements variations Ẋ are then numerically propagated, as
it is done in classical semi-analytical techniques (Cefola et al., 1974):

X̄(t) = X0+

∫ t

t0

Ẋ
(
τ, X̄(τ), dLp(τ), αp(τ), βp(τ), dLa(τ), αa(τ), βa(τ), η(τ)

)
dτ

(19)
X̄ is the vector of averaged orbital elements and Ẋ is computed using:

Ẋ =
X2π −X0

T
(20)

where T is the orbital period. The contribution of the J2 zonal harmonic was
already included in the analytical formulae developed in (Zuiani & Vasile,
2015). However, the Deorbiting VRP strategy requires also the effect of the
atmospheric drag. An analytical solution for the effect of the atmospheric
drag will be developed in the next section.

5.3.1. Perturbation due to atmospheric drag

In Zuiani & Vasile (2015) analytical expressions for the motion of a space-
craft under a perturbing acceleration were derived using an asymptotic ex-
pansion of Gauss’ equations in terms of non-singular equinoctial elements.
The perturbing accelerations were expressed in a radial-transverse-normal
reference frame, as in Eq. (18). The first step towards the derivation of an
analytical formula for the effect of drag is to express drag in this reference
frame as a function of the non-singular equinoctial elements. The magnitude
of the acceleration due to drag can be defined as (Vallado & McClain, 2001):

aD =
1

2
ρCD

A

m
v2 (21)

where ρ is the atmospheric density, CD the drag coefficient of the spacecraft,
A the area of the spacecraft in the direction of the velocity, m the mass and
v its velocity. It is possible to express aD as a function of the equinoctial
elements by using the energy equation to write the square of the velocity as:

v2 =
µ

a

(
2Φ(L)

B2
− 1

)
(22)
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where Φ(L) = 1 + P1 sinL + P2 cosL and B =
√

1− P 2
1 − P 2

2 . Therefore,
the value aD is:

aD =
1

2
ρCD

A

m

µ

a

(
2Φ(L)

B2
− 1

)
(23)

The drag acceleration adrag is directed along the opposite direction of the
velocity vector of the spacecraft and therefore its orientation in the radial-
transverse-normal reference frame is defined by the flight path angle γ as:

adrag =


ar = aD sin γ

aθ = aD cos γ

ah = 0

(24)

where γ is:

tan γ =
e sin θ

1 + e cos θ
(25)

The angle γ can be expressed as a function of the equinoctial elements as:

sin γ =
P2 sinL− P1 cosL

D

cos γ =
1 + P1 sinL+ P2 cosL

D

(26)

where D =
√

1 + P 2
1 + P 2

2 + 2(P2 cosL+ P1 sinL). The three components
of the acceleration due to the atmospheric drag can be expressed, using Eqs.
(23), (24) and (26) as:

ar =
1

2
ρCD

A

m

µ

a

(
2Φ(L)

B2
− 1

)
(P2 sinL− P1 cosL)

D

aθ =
1

2
ρCD

A

m

µ

a

(
2Φ(L)

B2
− 1

)
(1 + P1 sinL+ P2 cosL)

D

ah = 0

(27)

By substituting this acceleration in Gauss’ planetary equations, the fol-
lowing analytical equations for the variations of the equinoctial elements can
be obtained:
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a = a0 + a2
0CD

A

m

(
e2

0IDrag1 + IDrag2
)

P1 = P10 +B2
0a0CD

A

m
[sin (Ω0 + ω0) (eIDrag3 + IDrag5) + cos (Ω0 + ω0) IDrag4]

P2 = P20 +B2
0a0CD

A

m
[cos (Ω0 + ω0) (eIDrag3 + IDrag5)− sin (Ω0 + ω0) IDrag4]

Q1 = Q10

Q2 = Q20

(28)

where a0, P10, P20, Q10 and Q20 are the initial equinoctial elements. IDrag1,
IDrag2, IDrag3, IDrag4 and IDrag5 are:

IDrag1 =

∫ θ

θ0

sin2 ϑ
√

1 + e2 + 2e cosϑ

(1 + e cos2 ϑ)2
ρ(ϑ)dϑ (29)

IDrag2 =

∫ θ

θ0

√
1 + e2 + 2e cosϑρ(ϑ)dϑ (30)

IDrag3 =

∫ θ

θ0

√
1 + e2 + 2e cosϑ

(1 + e cos2 ϑ)2
ρ(ϑ)dϑ (31)

IDrag4 =

∫ θ

θ0

sinϑ
√

1 + e2 + 2e cosϑ

(1 + e cos2 ϑ)2
ρ(ϑ)dϑ (32)

IDrag5 =

∫ θ

θ0

cosϑ
√

1 + e2 + 2e cosϑ

(1 + e cos2 ϑ)2
ρ(ϑ)dϑ (33)

The atmospheric density ρ is expressed as an expansion in the altitude h
of the following form:

ρ (θ) =
N∑
j=0

cjh(θ)j =
N∑
j=0

cj

(
p

1 + e cos θ
−R⊕

)j
(34)

where p is the orbit parameter, p = a(1−e2). In order to better approximate
the density profile, different value of the coefficients cj are computed for
different ranges of altitude. The altitude is broken down in the following
segments: [150, 250] km, [250, 350] km, [350, 500] km, [500, 700] km, [700,
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1000] km, [1000, 2000] km, [2000, 3000] km, [3000, 4000] km and [4000,
36,000] km. On each segment a Chebyshev polynomial of order N = 4 is
used for ρ(θ):

ρ(θ) = k0 + k1

(
1

1 + e cos θ

)
+ k2

(
1

1 + e cos θ

)2

+ k3

(
1

1 + e cos θ

)3

+

+ k4

(
1

1 + e cos θ

)4

where

k0 = c0 − c1R⊕ + c2R
2
⊕ − c3R

3
⊕ + c4R

4
⊕

k1 = c1p− 2c2pR⊕ + 3c3pR
2
⊕ − 4c4pR

3
⊕

k2 = c2p
2 − 3c3p

2R⊕ + 6c4p
2R2

⊕

k3 = c3p
3 − 4c4p

3R⊕

k4 = c4p
4

The coefficients cj are obtained by fitting the polynomial expansion to the
exponential atmospheric density model in Vallado & McClain (2001). By
substituting the previous expression for ρ(θ) in Eqs (29) to (33) the integrals
take the form:

IDrag−n =

j=4∑
j=0

knIDrag−nj n = 1, . . . 5 (35)

The expression of the integrals and their analytical solutions are reported
in Appendix A.

In the following, the integral in Eq. (35), is simply added to the effects
due to J2 and low-thrust acceleration. Fig. 10 shows the comparison of nu-
merical and averaged analytical propagation for a propagation of 4 months
considering perturbations due to J2, atmospheric drag and continuous neg-
ative tangential acceleration due to a thrust of 0.1 N applied to a 3000 kg
spacecraft with initial orbital elements defined in Table 3. For the atmo-
spheric drag, the drag coefficient CD is set to 2.2 and the area to mass ratio
of the spacecraft is assumed to be A/m = 10−2m2/kg. The numerical prop-
agation is realized using Matlab ode113 with integration of the equations of
Gauss. The proposed propagation is an example of the deorbiting phase of
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Table 3: Initial orbital elements for propagation with J2, atmospheric drag and negative
tangential acceleration

a [km] e i [deg] Ω [deg] ω [deg]
7470 0.01 63.43 10 10
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Figure 10: Comparison of averaged analytical and numerical propagation with J2, atmo-
spheric drag and continuous low-thrust negative tangential acceleration.
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the Deorbiting VRP. The results of the averaged analytical propagator are
in agreement with those of the numerical propagation.

Particular attention has to be paid when the propagation is realised over
longer period of time and at lower altitudes. In this case the coupling of
J2 and atmospheric drag requires a corrective term δr to the radial position
(Curell (1998)):

r = rKeplerian + δr (36)

where
rKeplerian =

r

1 + e cos θ
(37)

and

δr = J2

R2
⊕

p

{
1

4
sin2 i cos 2 (ω + θ)−

[
1

2
− 3

4
sin2 i

][
1 +

e cos θ

1 +
√

1− e2
+

2√
1− e2 r

a

]}
(38)

The corrective terms δr has to be added to r in Eq. (34). To show
the effect of the coupling term a propagation of one year considering J2 and
atmospheric drag is realised using the initial orbital elements defined in Table
4, describing a lower altitude orbit than the one in Table 3.

Table 4: Initial orbital elements for one year propagation with J2 and atmospheric drag.

a [km] e i [deg] Ω [deg] ω [deg]
6978.14 0.03 30 0 30

When the corrective term is not taken into account the averaged analytical
propagation gives an error with respect to the numerical propagation, as
shown in Fig. 11. When using the corrective term δr for r, however, the
results of the averaged analytical propagation coincide with those of the
numerical propagation, as shown in Fig. 12. In this case the propagation
was realised with numerical integration of Eq. (29) to (33). The numerical
integration of these equations slows down the averaged propagator by a factor
of at least 6. However, for the purpose of this study, the results obtained
are valid without the corrective term, as shown in Fig. 10. This is due
to the rapid deorbit of the satellite due to the presence of the low-thrust
acceleration, meaning that the coupling effect of J2 and atmospheric drag
is not felt by the satellite. Therefore the integrals reported in Appendix A,
that do not include the corrective term δr, can be used.
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Figure 11: Comparison of averaged analytical and numerical propagation with J2 and
atmospheric drag without corrective term for the position.
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Figure 12: Comparison of averaged analytical and numerical propagation with J2 and
atmospheric drag with corrective term for the position.
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5.4. Rendezvous strategy

The rendezvous of the chaser with the target object requires imposing a
terminal constraint on all the six orbital elements. For a transfer realised in
a given time of flight, ToF , the optimisation problems consists in minimising
the ∆V required to realise the transfer subject to the terminal constraints:

C =


aC − aT
eC − eT
iC − iT

ΩC(t0 + ToF )− ΩT (t0 + ToF )
ωC(t0 + ToF )− ωT (t0 + ToF )
θC(t0 + ToF )− θT (t0 + ToF )

 = 0 (39)

where t0 is the departure time and the subscripts C and T denote the chaser
servicing spacecraft and the target, respectively.

The method we propose to satisfy constraint equations (39) takes advan-
tage of the natural rate of nodal regression and its dependence on the altitude
(Pollard, 2000). The total transfer, characterised by a time of flight ToF ,
is divided into different phases. In the first phase, an optimisation problem
is solved in order to satisfy the terminal constraints on e, i and ω, while
minimising the propellant consumption in a time ToFe,i,ω.

The second phase is realised in a time of flight ToFa,Ω = ToF − ToFe,i,ω
and its aim is to correct a and Ω, while keeping the terminal value of i and
e and ω constant. It has to be noted that ω is not expected to change much
during the transfer because of the inclination of the targets, which is close to
the critical value of 63.43 deg. In order to achieve the final desired a and Ω
the following strategy, that takes advantage of the natural nodal regression
and its dependence on altitude, is used (Chamot & Richard, 2012):

- An optimisation problem is solved in order to minimise the ∆V required
to move the spacecraft, in a time of flight Tt1, from the orbit attained at
time ToFe,i,ω to an appropriate parking orbit with semimajor axis aw,
while constraining e to be equal to the target’s eccentricity eT . Since
this transfer is realised with in-plane thrust only (β = 0), no change of
inclination will take place and therefore no constraint on i is required.

- The spacecraft remains on the parking orbit for an appropriate time
Tw,Ω.
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- An optimisation problem is solved in order to minimise the ∆V required
to move the spacecraft, in a time of flight Tt2, from the parking orbit to
the final orbit with semimajor axis aT , while constraining e and ω to be
equal to eT and ωT (t0 + ToFe,i,ω + Tt1 + Tw,Ω + Tt2). Since this transfer
is realised with in-plane thrust only (β = 0), no change of inclination
will take place and therefore no constraint on i is required. At the end
of this transfer the following condition is satisfied:

(40)ΩC(t0 +ToFe,i,ω +ToFa,Ω) = ΩT (t0 +ToFe,i,ω +ToFa,Ω)

where ToFa,Ω corresponds to the sum of transfer times and waiting
time:

Tt1 + Tw,Ω + Tt2 = ToFa,Ω = ToF − ToFe,i,ω (41)

This strategy requires the computation of four parameters: Tt1, aw, Tw,Ω
and Tt2. Hence, four equations are required to solve the problem. The first
one derives directly from the available time, Eq. (41). The second equations
is derived from Edelbaum theory for the required ∆V for a transfer between
circular orbits (Edelbaum (1961)). This equation applies here because of the
small eccentricity of the orbits of the targets. By denoting the semimajor
axis of the chaser the end of the first phase with aC(e,i,ω), the time to realise
the transfer to the parking orbit can be computed as the ratio between the
required ∆V and the spacecraft acceleration:

Tt1 =
k
√
V 2
C(e,i,ω) + V 2

w − 2VC(e,i,ω)Vw

ε
(42)

where VC(e,i,ω) is the circular velocity on the orbit of radius aC(e,i,ω) and Vw
is the circular velocity on an orbit of radius aw. The quantity ε is the accel-
eration of the electric engine and the factor k = 1.5 is used to accommodate
the extra time required to satisfy the constraints on e and ω. Similarly:

Tt2 =
k
√
V 2
T + V 2

w − 2VTVw
ε

(43)

where now VT is the velocity on a circular orbit of radius equal to the semi-
major axis of the target object. The forth equation is the matching condition
on Ω at the end of the transfer:

(44)ΩT (t0) + Ω̇T (Tt1 + Tt2 + Tw,Ω) = ΩC(t0) + Ω̇t1Tt1 + Ω̇wTw,Ω + Ω̇t2Tt2
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In Eq. (44) Ω̇T is the drift of the right ascension of the target orbit and
Ω̇t1 and Ω̇t2 are the drifts of the right ascensions of the transfers to and from
the parking orbit. The drift Ω̇ changes during these two transfers because of
the variation of semimajor axis but it can be approximated to be constant
by using a mean semimajor axis at1 =

aC(e,i,ω)+aw

2
for the transfer to the

parking orbit and a mean semimajor axis at2 = aw+aT
2

for the transfer from
the parking orbit to the target orbit. Eqs (41) to (44) allow to compute Tt1,
aw, Tw,Ω and Tt2 required for the change of Ω.

5.4.1. Orbital phasing

One underlying assumption in the estimation of the ∆V is that the trans-
fer requires a long spiral in which the variation of orbital elements over a
complete revolution is small. In this case, the orbital elements over the first
revolution of the spiral will be very similar to the orbital elements of the
departure orbit. Likewise, the orbital elements over the last revolution of
the spiral will be very similar to the orbital elements of the target orbit.
Furthermore, the initial and final true anomalies can change by at most 2π,
which corresponds to equal or less than the orbital period of the departure,
or target, orbit. Hence, a change of initial or final phase angle to match the
initial and terminal conditions will have little effect on the overall spiral and
thus on the total ∆V .

An example is reported hereafter to show that the variation in ∆V when
changing the departure true anomaly and reducing the time of flight by less
than one orbital period is negligible. Let us consider as an example, the
transfer from object 39012 to object 39016, realised with a time of flight of
44 days. Table 5 show the ∆V required for the transfer, for different initial
masses of the spacecraft and the three cases: (1) tw = 0, ToF = 44 days;
(2) tw = 40 min, ToF = 44 days; (3) tw = 43 min, ToF = 44 days - 43
min, where tw is a waiting time on the departure orbit, before starting the
transfer, that causes a change of the initial phase angle.

Given its negligible effect on the ∆V and ToF , the phasing will not be
considered when estimating the cost of the transfers.

5.5. Problem transcription

For the Deorbiting TSP strategy, the chaser rendezvous with each object
using the strategy described in Sec. 5.4. During the optimisation process
the drag perturbation is not included in the analytical propagator because
the effect of the drag is negligible at the considered altitudes. As an example
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Table 5: ∆V required for the transfer from object 39012 to object 39016 for different
initial masses of the spacecraft, departure times and times of flight.

ToF = 44 days ToF = 44 days ToF = 44 days - 43 min
m [kg] tw = 0 min tw = 40 min tw = 43 min

800 0.0836 0.0836 0.0838
1000 0.0856 0.0856 0.0858
1200 0.0886 0.0886 0.0858
1400 0.0947 0.0947 0.0931
1600 0.1110 0.1110 0.1101

of the Deorbiting TSP, Figures 13 shows the variation of orbital elements
during the transfer from object 40342 to object 40338, realised in 42 days.
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Figure 13: Orbital element variation of the chaser and of the target object 40338 during
the transfer from spacecraft 40342 to 40338.

For the Deorbiting VRP, the following transfer model is assumed. Con-
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sidering a situation in which the chaser has already realised rendezvous and
docking with one of the target objects, the total transfer from one target to
another consists in the following phases:

- The chaser de-orbits the target object by applying a constant negative
tangential thrust over all its orbit, until it reaches a perigee of 300
km altitude. Once this disposal orbit has been reached, the servicing
spacecraft disengages with the target.

- The chaser increase its semimajor axis by applying a constant positive
tangential thrust, until it reaches the semimajor axis of the next target
object

- The chaser rendezvous with the next target object using the strategy
described in Sec. 5.4

The deorbiting and orbit raising phases are computed using the averaged
analytical propagator described in Sec. 5.4 and considering both J2 and drag
perturbations. As an example, Fig. 14 shows the variation of perigee altitude
of the chaser (grabbing object 36413 during the deorbiting phase) and the
subsequent orbit raising phase. The total time required is 180 days. The
shorter orbit raising time is due to the fact that, when the perigee reaches 300
km, the servicing spacecraft dispose of the target. The orbit raising phase is,
therefore, realised with a lower mass, resulting in an increased acceleration.
Fig. 14 shows also the variation of RAAN of the servicing spacecraft during
the deorbit and orbit raising phases and the variation of right ascension of
the next target object, 39011. The right ascension of the two objects at the
end of the orbit raising phase is very close, resulting in a reduced transfer
time to the target object.

5.6. Optimisation method

A direct method based on a single-shooting, direct collocation method is
used. The MATLAB fmincon-sqp algorithm is used to solve the problem.
Four nodes and linear interpolation are used to model the variation of the
control variables in the optimisation of the first transfer of the rendezvous
strategy when e, i and ω are modified. From four to eight nodes are used
for the optimisation of the transfer to and from the parking orbit in order to
adjust Ω.
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Figure 14: Variation of the perigee altitude for the servicing spacecraft during deorbit of
object 36413 and orbit raising to the semimajor axis of target object 39011.

5.6.1. Low-thrust transfer surrogate model

In order to reduce the computational burden in the process of the identifi-
cation of the optimal sequence of targets, a surrogate model of the low-thrust
transfer model is used by the Physarum algorithm to evaluate the cost to link
two nodes (Sec. 4), (Zuiani & Vasile (2012)).

The surrogate was generated before the optimisation using a database of
pre-computed transfers between pairs of departure and target orbits. The
surrogate model yields the value of the ∆V for a given combination of mass
and time of flight. For this study, the Matlab Toolbox DACE (Design and
Analysis of Computer Experiment) has been used to construct a Kriging-
based surrogate of the ∆V (Lophaven et al., 2002). As an example, Fig.
15 shows the surrogate model for the transfer from object 36414 to object
36417.

6. Mission definition

For this study, an electric propulsion engine providing 0.1 N of thrust and
characterised by a specific impulse Isp of 1600 s is considered. The wet mass
of the servicing spacecraft, without the mass of the deorbiting kits, is 1000
kg. Each serviced target is assumed to have a mass of 2000 kg 1.

1http://astronautix.com/c/changzheng4c.html
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Figure 15: Surrogate model for the computation of ∆V for the transfer 36414-36417

For the Deorbiting TSP, 10 de-orbit kits of 175 kg are assumed to be on
board the servicing spacecraft, resulting in a total initial mass of 2750 kg.
The mass of 175 kg has been estimated considering the propellant required
to reduce the perigee of the orbit of all the considered targets to 300 km.
Assuming that the de-orbiting kit is activated at the apogee of the orbit of
the target, the ∆VDK required to reduce the perigee altitude to hpD = 300
km is:

∆VDK =

√
2
µ

ra
− µ

a
−
√

2
µ

ra
− µ

aD
(45)

where a is the semimajor axis of the satellite to be deorbited (Table 1), ra is
its apogee radius and aD = (ra + rpD)/2, where rpD = hpD +R⊕.

Assuming a specific impulse of the deorbiting kit of Isp = 303.5 s (Zand-
bergen (2013)) and a structural mass fraction equal to 0.2 (to include also
the mass of the attaching mechanism of the de-orbit kit), the higher mass of
de-orbit kit for all the objects in Table 1 is 175 kg.

It is assumed that at 300 km the effect of the drag is relevant enough
to cause the re-entry of the object. For the objects in Table 1, a perigee
altitude of 300 km causes the object to re-enter naturally in a time that
goes from a minimum of 541 days to a maximum of 654 days. Introducing
a lower altitude, corresponding, for example, to a controlled re-entry is also
possible and would simply increase the mass of all the de-orbiting kits without
affecting the overall strategy.

A 175 kg drop is modeled after each transfer to simulate the attachment
of the de-orbit kit to the target. The propellant mass resulting from the
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transfer is also subtracted from the current mass.

6.1. Physarum algorithm settings

In addition to the Physarum algorithms parameters m, ρ, GF , Nagents,
pram, rini, kexploration and λ introduced in Sec. 4, additional quantities need
to be defined. These additional parameters are the set of targets Ss =
{S1, S2, . . . , SNP

} (Table 1), the mission start epoch, tstart, the maximum
mission time, Tmax, the lower and upper boundaries on the time of flight
ToFmin and ToFmax for each leg connecting two targets i and j, the time
spent at the target to dock and install the de-orbiting kit, tservicing, and the
maximum allowed change of velocity ∆Vmax. Another important parameter
is the maximum number of function calls, Fevalmax, where a function call
corresponds to the evaluation of one arc. The values of the parameters of the
Physarum algorithm, together with the additional problem parameters used
in this study are reported in Table 6.

Table 6: Setting parameters

m 5× 10−3

ρ 10−4

GF 5× 10−3

Nagents 40
NGeneration 40
pram 0.7
λ 1
rini 1
kexploration 2
Fevalmax 1× 105

Ss All elements in Table 1
tstart 30 May 2015
Tmax 365 days
ToFmin 1 day
ToFmax 60 days for the De-Orbit kit strategy

185 days for the Spiral Down&Up strategy
tservicing 7 days
∆Vmax 2.0 km/s
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7. Results

This section presents the results obtained for each of the two proposed
ADR strategies. For each one of the two strategies, the Physarum solver
was run on 25 different instances of the optimisation problem. Each instance
uses one of the 25 targets in Table 1 as the starting point of the sequence
of targeted objects. Each optimisation was repeated 50 times, given the
stochastic nature of the Pysarum solver.

7.1. Deorbiting TSP

Figure 16 shows the results obtained when considering different possible
initial targets for the 50 runs of the Physarum solver. The x-axis shows the
NORAD ID of the first target in the sequence and the y-axis the total ∆V
(left) and time of flight (right) required for the entire mission. Each dot
corresponds to one of the 50 solutions.
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Figure 16: ∆V of 50 runs of the Physarum solver for the Deorbiting TSP, using different
initial objects (as shown on the x axis). Black dots represent solution with 10 de-orbited
objects, blue dots solutions with 9 de-orbited objects and red dots solutions with 5 de-
orbited objects.

Figure 16 shows that the solver found solutions with 10 or 9 de-orbited
objects in most of the cases but could find only sequences with a maximum of
5 de-orbited objects if the first object is 39243, 39240, 39244, 39239 or 39241.
This is due to the value of the right ascension of these objects, extremely
different from the right ascension of the others (see Table 1). This means
that a transfer from these targets to any other target in Table 1 requires
longer time of flight.
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The solution characterised by the maximum number of visited objects (10)
and lower ∆V is reported in Table 7. Ten objects, identified in Table 7 by
their NORAD ID, can be removed in less than one year. The mass m0 is the
mass at the beginning of each transfer and mf the mass at the end of each
transfer. The drop in mass at the beginning of each transfer is due to the
attachment of the de-orbit kit. ToF represents the time of flight required to
realise each transfer. The total time of the mission, considering a servicing
time of 7 days for each object, is 365 days.

Table 7: Sequence of satellite for Deorbiting TSP.

Departure Arrival ∆V ToF m0 mf

Object Object [km/s] [days] [kg] [kg]

1 39013 39011 0.010 51.00 2575.00 2398.35
2 39011 39012 0.004 10.00 2398.35 2222.81
3 39012 39016 0.093 27.00 2222.81 2034.60
4 39016 40342 0.044 31.00 2034.60 1853.95
5 40342 40340 0.013 32.00 1853.95 1677.44
6 40340 40339 0.024 43.00 1677.44 1499.85
7 40339 40338 0.003 2.00 1499.85 1324.58
8 40338 40343 0.114 52.00 1324.58 1139.98
9 40343 39015 0.042 54.00 1139.98 961.90

Total - - 0.3470 302 - -

Information about the variability of the results obtained by the Physarum
solver are given in Table 8. The first column shows the target used as root
for the generation of the tree; the second column shows the maximum num-
ber of de-orbited targets starting from that root; the third column reports
the number of runs (out of the 50) that return a number of de-orbited tar-
gets equal to the maximum number in column two; column four reports the
number of unique sequences among the solutions with number of de-orbited
targets equal to the maximum number; ∆Vmin is the minimum cost of the
solutions with maximum number of de-orbited targets and the last column
reports the number of solutions with same sequence of visited targets as the
one of with ∆Vmin. The result relative to Table 7 is shown in bold. The
sequence of targets reported in Table 7 is found 2 times by the Physarum
solver, once with ∆V equal to 0.3470 km/s and total time of flight of 365
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days (Table 7) and once with a ∆V of 0.3730 km/s and 334 days of time of
flight.

Table 8: Analysis of the results given by the Physarum solver for the Deorbiting TSP.

Root Max. num. Num. sol. max. Unique seq. ∆Vmin Num. sol. same
objects num. objects max. obj. [km/s] seq. ∆Vmin

39012 10 9/50 4 0.3889 5
39016 10 5/50 3 0.4163 3
39015 10 10/50 6 0.3666 1
39011 10 9/50 3 0.3920 5
39013 10 4/50 3 0.3470 2
40113 10 2/50 2 0.3719 1
40110 10 6/50 4 0.4050 3
40114 10 6/50 4 0.3720 2
40111 10 7/50 5 0.3992 3
36417 10 2/50 2 0.3639 1
40109 10 8/50 6 0.4065 1
36418 10 5/50 4 0.3956 1
36415 10 5/50 3 0.4037 1
36413 10 5/50 4 0.3969 2
36414 10 7/50 4 0.3943 1
40340 10 4/50 3 0.4200 2
40343 10 21/50 9 0.3724 4
40342 10 5/50 3 0.4190 3
40339 10 6/50 4 0.4282 2
40338 10 3/50 2 0.4255 2
39243 5 50/50 1 0.1755 50
39240 5 50/50 2 0.1951 34
39244 5 50/50 3 0.1882 26
39239 5 50/50 2 0.1939 31
39241 5 50/50 2 0.1865 42

The average run time per generation of the optimiser on one TSP instance
using 40 agents is 2 minutes on an Intel(R) Core(TM) i7-3770 CPU 3.4GHz
with 8GB RAM with the code implemented in Matlab.
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7.2. Deorbiting VRP

Figure 17 shows the results obtained when considering different possible
initial targets for the Deorbiting VRP and 50 runs of the solver. The x-axis
shows the NORAD ID of the first target in the sequence and the y-axis the
total ∆V and time of flight required for the entire mission.
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Figure 17: ∆V of 50 runs of the Physarum solver for the Deorbiting VRP, with different
initial object in the sequence (as shown on the x axis). Black dots represent solution with
3 serviced objects, blue dots solutions with 2 serviced objects and red dots represents
solution with 1 serviced objects.

The solution characterised by the maximum number of de-orbited targets
and lower ∆V for the Deorbiting VRP ADR is reported in Table 9. In this
Table ToF represents the time required to deorbit the initial target, raise the
orbit to the semimajor axis of the next target and then adjust all the other
orbital elements.

Table 9: Sequence of satellite for the Deorbiting VRP strategy.

Departure Arrival ∆V ToF m0 mf

Object Object [km/s] [days] [hours] [kg] [kg]

1 39243 36413 1.049 163.00 3000.00 2888.62
2 36413 39015 0.809 183.00 2888.62 2801.66

Total - - 1.8571 353 - -

The deorbiting of a target from the selected altitude region and the sub-
sequent orbit raising to the next target takes a considerable amount of time,
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making this strategy not viable to remove 5 to 10 targets per year. These
results are in agreement with Virgili & Krag (2009), who found that 5 objects
per year can not be actively de-orbited by grabbing and moving them to a
given disposal orbit. Information about the variability of the results obtained
with the Physarum solver are given in Table 10. The results relative to Table
9 are shown in bold. In this case the Physarum solver finds 5 solutions with
sequence equal to the one reported in Table 10.

For the Deorbiting VRP the run time is dependent upon the target used
as root of the decision graph. The maximum run time per generation for
40 agents is 11 minutes on an Intel(R) Core(TM) i7-3770 CPU 3.4GHz with
8GB RAM with the code implemented in Matlab.

8. Conclusions

In this paper, two Active Debris Removal strategies were analysed: Deor-
biting TSP and VRP. In the Deorbiting TSP strategy a servicing spacecraft,
equipped with low-thrust propulsion engine, attach a de-orbit device to each
target to be removed; in the Deorbiting VRP strategy the servicing spacecraft
grab the targets and deorbit them using low-thrust propulsion. Targets in
LEO with altitude in the 800-1400 km range were considered in this analysis.

In order to find the optimal sequence of targets to be serviced (with the
objective of maximising the number of de-orbited objects and minimising the
propellant consumption), an innovative incremental planning and scheduling
optimisation algorithm have been used. In order to reduce the computational
burden, the planning and scheduling algorithm was used in conjunction with
the use of a surrogate model of the low-thrust transfer model.

This planning approach provided, per run, 1600 solutions in approximately
80 minutes for the Deorbiting TSP and in a maximum time of 7 hours for
the Deorbiting VRP. On the Deorbiting TSP, out of the 1600 solutions, the
planner could consistently find sequences with 10 objects, together with a
large number of sequences with 9 objects or less. For the Deorbiting VRP,
solutions fulfilling the one year constraint were limited to 3 targets.

This paper has shown that the Deorbiting TSP strategy is the most effec-
tive ADR method, given the time constraint of 1 year for the mission time.
Up to 10 targets per year can be removed with this strategy. On the con-
trary, the time required by the Deorbiting VRP strategy to deorbit one single
target makes it an unfeasible option. This is in agreement with what found
by Virgili & Krag (2009). Moreover the Deorbiting TSP strategy is also less
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Table 10: Information about the variability of the results of the Physarum solver for the
Spiral Deorbiting VRP strategy.

Root Max. num. Num. sol. max. Unique seq. ∆Vmin Num. sol. same
objects num. objects max. obj. [km/s] seq. ∆Vmin

39012 1 50/50 1 - -
39016 1 50/50 1 - -
39015 1 50/50 1 - -
39011 1 50/50 1 - -
39013 1 50/50 1 - -
40113 2 50/50 1 1.0026 50
40110 2 50/50 3 1.0710 48
40114 2 50/50 1 1.0219 50
40111 2 50/50 2 1.0592 34
36417 2 50/50 3 0.8581 12
40109 2 50/50 4 1.0837 42
36418 2 50/50 2 0.7748 48
36415 2 50/50 2 0.8172 39
36413 2 50/50 3 0.8118 36
36414 2 50/50 4 0.8190 21
40340 1 50/50 1 - -
40343 1 50/50 1 - -
40342 1 50/50 1 - -
40339 1 50/50 1 - -
40338 1 50/50 1 - -
39243 3 29/50 9 1.8571 5
39240 3 26/50 4 1.9513 5
39244 3 26/50 7 1.8766 13
39239 3 41/50 4 1.8753 17
39241 3 28/50 8 1.9513 5

risky because the servicing spacecraft spends a shorter time in contact with
the non-cooperative target and is not subjected to perturbation experienced
during the deorbiting phase.

To be noted that the De-orbiting TSP strategy analysed in this paper
considers identical de-orbiting kits for each satellite and a cost function that
does not depend on the mass of the de-orbiting kit. If the mass of the de-
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orbiting kit was included in the cost function the planner would yield also
the optimal distribution of de-orbiting kits for a given scenario. This will be
the subject of a future investigation.

Further work will look into the evaluation of the impact of the relaxation
of some of the constraint parameters such as the maximum time of flight or
the maximum mission time on the number of feasible solutions, in particular
for the Deorbiting VRP strategy. In addition, single and multi-servicing
spacecraft mission options will be considered and the same strategies will be
applied to a different groups of targets.
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Appendix A. Analytical Integrals

Appendix A.1. IDrag−1

IDrag−1 = k0IDrag−10+k1IDrag−11+k2IDrag−12+k3IDrag−13+k4IDrag−14 (A.1)
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Appendix A.2. IDrag−2
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Appendix A.3. IDrag−3

IDrag−3 = k0IDrag−30+k1IDrag−31+k2IDrag−32+k3IDrag−33+k4IDrag−34 (A.3)
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Appendix A.4. IDrag−4
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Appendix A.5. IDrag−5
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