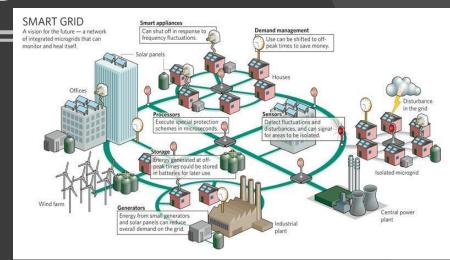


DISTRIBUTED GENERATION ACCESS AND POWER FLOW MANAGEMENT

Ivana Kockar, Graham Ault, Euan Davidson and Mike Dolan
Institute for Energy and Environment
Department of Electronic and Electrical Engineering
University of Strathclyde

Overview


- Role of Active Network Management
- Access rights for DG
 - Types
 - Arrangements
 - Possible improvements
- Comparisons of different approaches

Some Key Challenges

- Integrating intermittent generation
 - finding the best ways of integrating intermittent generation including residential microgeneration;

- Developing decentralized architectures
 - enabling smaller scale electricity supply systems to operate harmoniously with the total system;
- Capturing the benefits of DG and storage.

Active Network Management

- Connection of DG units on a distribution network affect power flows
- Why does it matter?
 - Most distribution networks are originally designed for unidirectional power flow
 - With DG connections power flow become bidirectional
 - Change in flow directions and magnitude
 - May affect network security
- Need to control flows i.e control DG operation via access arrangements

DG Access Rights in the UK

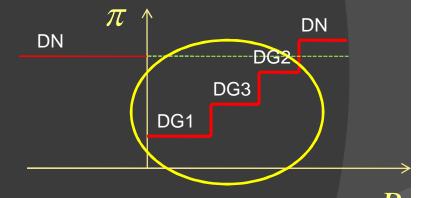
- Two types of network access rights
 - Firm
 - Non-firm
- Why managing no-firm access rights is important?
 - Increase DG penetration with less infrastructure investments
 - Low carbon networks
 - Facilitate DG connections and investments
- How to manage non-firm access?
 - Different access rules...

Access Rules

- Last-in-first-out (LIFO) rule
 - Last connected DG unit will be curtailed first
 - Currently implemented in the UK
 - Pros: Transparent and simple
 - Cons: Curtails even generators that do not contribute to the network operation problem and thus reduces amount of overall DG outputs
 - Calculations are based on power flow analysis

Access rules based on OPF

$$egin{aligned} \min_{\mathbf{P}_g,\mathbf{Q}_g\mathbf{V},\delta} \sum C_i(P_{gi}) \ &s.t. \ &(\mathbf{P}_g,\mathbf{Q}_g,\mathbf{V},\pmb{\delta}) \in S \end{aligned}$$


- OPF-LIFO
- Least Curtailment Access
- Willingness to pay

OPF-LIFO

- Assign costs to generators according to connection order
- This mimics the LIFO
 approach but has additional flexibility not to curtail generators that are not contributing to the problem

 Increases of the utilization of DG resources

$$\min_{\mathbf{P}_{g},\mathbf{Q}_{g}\mathbf{V},\delta}\sum C_{i}(P_{gi})$$

- Least curtailment access
 - The objective function is based on minimizing a deviation from the maximum DG output

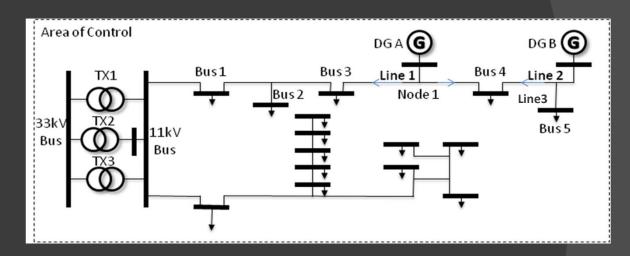
$$\min_{\mathbf{P}_{g},\mathbf{Q}_{g}\mathbf{V},\delta}\sum(P_{gi}^{\max}-P_{gi})$$

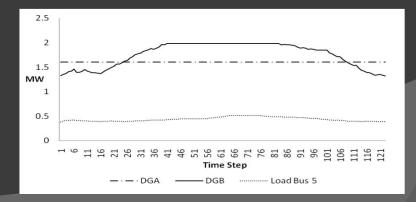
The value of maximum output is dynamic

- Willingness to pay for access
 - The objective function is based on minimizing a deviation from the maximum DG output
 - cost of deviation is different for each generator and based on its bid

$$\min_{\mathbf{P}_{g},\mathbf{Q}_{g}\mathbf{V},\delta}\sum C_{i}(P_{gi}^{\max}-P_{gi})$$

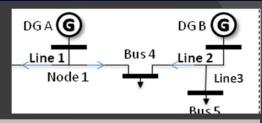
The value of maximum output is dynamic



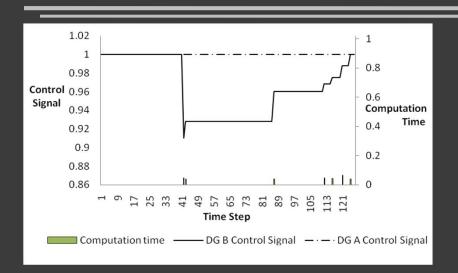

Case studies

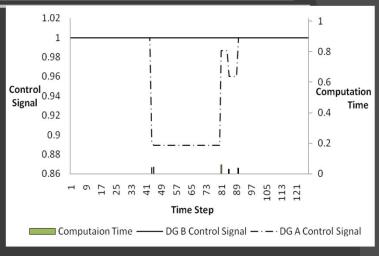
Distribution network with two DG units

- DG A constant output of 1.6MW
- DG B variable output
- Variable load at bus 5

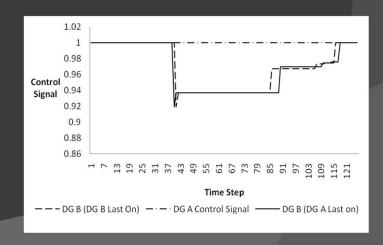


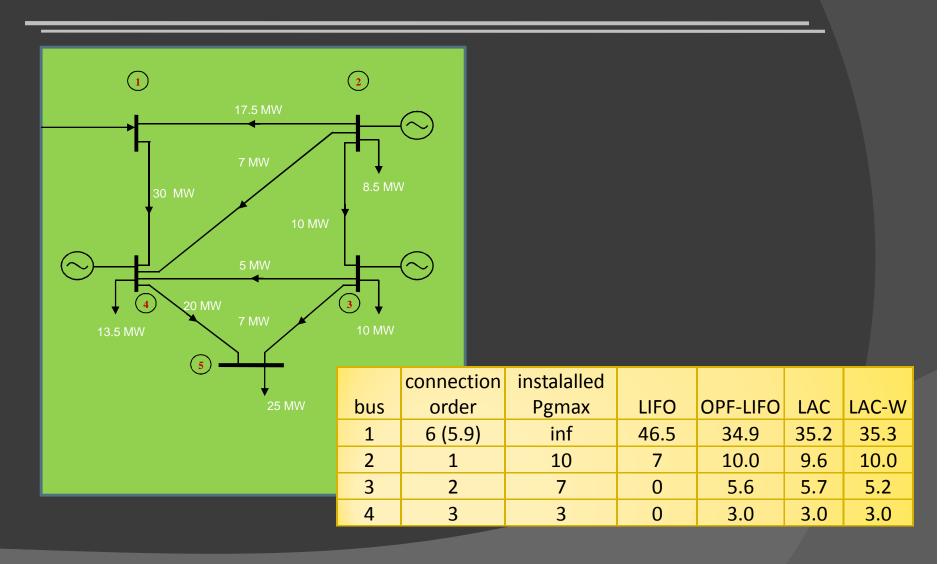
Load profile





LIFO vs OPF-LIFO





- Constraint on line 3
- DG B is "first on"
- LIFO: both A & B would be curtailed
- OPF-LIFO only B is curtailed

Case study for 5bus network

Pros

- less unnecessary curtailments
 - better utilization of DG units and network infrastructure
 - lower emissions

Cons

- more complex to implement
 - Solving OPF
 - Possibility to control DG units

Conclusions

- Improving DG access and network utilization is important
 - Lower infrastructure investment costs
 - Increase of DG connections
 - Lower emissions
- Access rules can help
- But...
 - necessary to evaluate technical requirements and cost analysis for their implementation

Remark ... Consumers' opinions on smart girds...

- Independent, "Consumer opinion divided on smart grid technology", 26 July 2010.
 - "While the Americans and Chinese are positive about smart grids, Europeans and Australians remain more skeptical despite the environmental benefits of the new technology"
 - 88% of American consumers trust the smart grid ©
 - 41% of Chinese are positive
 - 70% of British households would ignore any information provided by smart meters ☺

GE Survey

• GE survey

- 88%of Americans said they would be willing to use a smart device such as a meter, thermostat or appliance if it would help to better manage their energy
- 82 % of those willing to use these devices believe smart meters and smart appliances are the future.

GE Survey

- Some of the primary motivators for consumers' smart grid support include:
 - Desire to save money (95%)
 - Increased control over my energy bill (90%)
 - Desire to make a difference for my children or grandchildren (88%)
 - Helping reduce the number of power outages (86%)
 - Environmental concerns (85%)

Thank you!

