
Updating OWL2 ontologies using pruned rulesets

Sana Al-Azwari John N. Wilson
Dept. of Computer & Information Sciences, University of Strathclyde, Glasgow UK.

Sana.AlAzwari@strath.ac.uk, John.N.Wilson@strath.ac.uk

ABSTRACT
Evolution in Semantic Web content produces difference files (deltas)
that track changes between RDF versions. These changes may
represent ontology modifications and be expressed in OWL. The
deltas can be used to reduce the storage and bandwidth overhead
involved in disseminating ontology updates. Minimising the delta
size can be achieved by reasoning over the underlying knowledge
base. OWL 2 is a development of the OWL 1 standard that incorpo-
rates new features to aid application development. Among the sub
languages of OWL 2, OWL 2 RL/RDF provides an enriched rule
set that extends the semantic capability of the OWL environment.
This additional semantic content can be exploited in change detec-
tion approaches that strive to minimise the alterations to be made
when ontologies are updated. The presence of blank nodes (i.e.
nodes that are neither a URI nor a literal) in RDF collections pro-
vides a further challenge to ontology change detection because of
the practical problems they introduce when comparing data struc-
tures before and after update. In the light of OWL 2 RL/RDF, this
paper examines the potential for reducing the delta size by prun-
ing the application of unnecessary rules from the reasoning process
and using an approach to delta generation that produces the small-
est number of updates. It also assesses the impact of alternative
approaches to handling blank nodes during the change detection
process in ontology structures. The results indicate that pruning
the rule set is a potentially expensive process but has the benefit of
reducing the joins when carrying out the subsequent inferencing.

Categories and Subject Descriptors
I.2.4 [Semantic networks]: Miscellaneous

General Terms
Performance

Keywords
Ontology updates, OWL 2 RL-RDF, rule pruning

1 Introduction
The continuing growth of data repositories, both in size and quan-
tity, in association with expanding resources available over the World
Wide Web is leading to major challenges in the area of data science.
These must be addressed so as to provide a way of extracting the
knowledge content from such sources and consequently the poten-
tial benefits that they offer. Semantic Web technologies provide a
framework for integrating these data collections but there are still
many problems to be overcome. A further contribution to these
difficulties is the increasingly distributed nature of data in a rapidly
changing world. In this context, repositories that contain useful
data content typically need to be updated and these updates need
to be propagated to data replicas stored in a variety of locations.
This propagation may need to be carried out over data connections
that are relatively slow and unreliable given the size of the data sets
to be maintained. The practice of generating the difference (delta)
between successive versions of an ontology helps to reduce data
transfer. The delta can be copied to a remote site and used there to
produce a local version of the updated ontology.
OWL 2 provides a rich ontology language that describes data struc-
tures and the way that data elements (triples) are related to one
another. The OWL 2 RL/RDF variant also offers a rule set that
presents opportunities for reasoning over these data collections.
Given the size of such collections, for performance purposes it is
necessary to consider the most effective way of selecting and ap-
plying these rules to generate deltas that can then be distributed and
applied.
This paper assesses the impact of pruning rules in the OWL 2 rule-
set in the context of their use in reducing the size of updates needed
to transform ontologies between versions. It addresses the problem
of generating a minimal update set that could be propagated to re-
mote ontology replicas in order to maintain their consistency. As
well as mimimising this set for the purposes of conserving Internet
bandwidth, it is also important to generate the set with minimum
expenditure of resources given that a remote site may be blocked
until the update arrives.
Blank nodes provide a widely used method of representing n-ary
facts in ontologies. They present a challenge in the context of com-
paring ontology versions since it is difficult to be certain of their
eqivalence. The work reported here describes an approach to han-
dling blank nodes in OWL 2 ontologies in the context of updating
these structures. The paper reviews similar ontology update meth-
ods and describes the technical elements that contribute to the pro-
cess. It then describes pruning practice as it is applied to rules and
assesses the performance issues that surround this process.

2 Related work
Initial approaches to ontology change detection were based around
the pre-existing Unix diff tool. OntoView [8] extends this by sup-
porting the comparison of two versions of an ontology at the struc-
tural level, highlighting changes in the definitions of ontological
concepts and properties. The system distinguishes between rdf:lable
or comment changes, class or property changes and identifier changes.
OntoView splits an ontology into separate definitions, which are
then parsed into a group of RDF triples. Each group of triples rep-
resents a definition of a concept or a property. The algorithm then
locates each group of triples in the new version and establishes
a match with the corresponding group in the previous version of
the ontology. The changes between these groups are then calcu-
lated. It relies on the materialization of all the rdf:type triples in
the ontology. Blank nodes are characterised as identifier changes.
Blank node matching is used indirectly with node location in the
file, providing a heuristic to determine whether a particular blank
node matches one in the modified ontology.
The use of heuristics in the matching process is also incorporated
into PromptDiff [13] where matchers are combined with alignment
to produce the structural changes between versions. The process of
matching structures in PromptDiff can also be applied to processing
blank nodes but no special treatment is applied to this aspect of the
problem.
Also based on the diff approach, SemVersion [14] incorporates el-
ements of CVS text versioning [3]. It provides for blank node en-
richment, which adds properties to blank nodes in order to provide
for their treatment in a manner similar to normal nodes.
x-RDF-3X [12] uses extensive indexing of triples incorporating
various permutations of the triple itself as well as supporting in-
dexing on binary projections. The indexing eliminates the problem
of self-joins in table-based triple stores. Version control is main-
tained by timestamping triples. Updates are handled by lazy evalu-
ation with inserts being deferred until batch incorporation becomes
unavoidable, at which point, indexes are regenerated.
The RDF comparison tools reviewed in this section typically fo-
cus on high-level changes between RDF graphs. They provide for
presentation of these differences in a way that is effective for sup-
porting human interpretation such as highlighting differences with
different colours [8] or representing the differences in human lan-
guage rather than a language that is interpreted by machines [13].
By contrast, the approach described in this paper focuses particu-
larly on minimising the delta between OWL 2 ontology versions
and the contribution of rule pruning and blank node matching to
this process.

3 Ontology change detection techniques
Following established approaches to detecting the differences be-
tween RDFS ontology versions [15], explicit differences are ex-
pressed as:

DEFINITION 1 (EXPLICIT delta). Given two RDF models M
and M ′, let t denote a triple in these models, Del denote triple
deletion which is calculated by M − M ′, and Ins denote triple
insertion which is calculated by M ′ − M . The explicit delta is
defined as:

∆E = {Del(t)|t ∈M −M ′} ∪ {Ins(t)|t ∈M ′ −M}

Deltas over non-closed knowledge bases can be restricted by infer-
ence over the updates using RDFS entailment rules. This produces
the explicit dense (ED) and dense (D) delta.

DEFINITION 2 (EXPLICIT DENSE delta). Let M, M’, Del(t),
Ins(t) be as stated in Definition 1. Additionally let C(M ′) denote
the closure of M ′. ∆ED is defined as:

∆ED = {Del(t)|t ∈M − C(M ′)} ∪ {Ins(t)|t ∈M ′ −M}

DEFINITION 3 (DENSE delta). Let M, M’, Del(t), Ins(t) be as
stated in Definition 1. The dense delta is defined as:

∆D = {Del(t)|t ∈M − C(M ′)} ∪ {Ins(t)|t ∈M ′ − C(M)}

The dense delta is non-deterministic as a result of inter-effects be-
tween insertion and deletion. This problem is overcome by the
corrected dense delta (Dc) [1].

DEFINITION 4 (CORRECTED DENSE delta). Let ∆E, C(M)
and C(M ′) be as defined previously and additionally let s → t
indicate that s is an antecedent of t. The corrected dense delta
∆Dc is defined as

∆Dc = ∆E − {{Del(t)|t ∈ C(M ′)}
∪{Ins(t)|t ∈ C(M) ∧ {s→ t|s 6∈ Del(t)}}}

These definitions provide a basis for characterising the differences
between successive ontology versions. Exploiting the inference
that is implied in the RDFS entailment rules permits the corrected
dense delta to represent the most compact deterministic way of
transforming one version of an ontology into an updated version.

3.1 OWL 2 RL/RDF rules
The RDFS rule set provides limited scope for entailment and most
of the rules are not relevant to inference over RDF updates. The
OWL 2 RL/RDF rule set is more extensive, comprising of 23 rules
that provide considerable scope for reasoning over ontology up-
dates[11]. Examples of the rules are shown in Table 1.
OWL 2 rules form an OR tree and as can be seen from Table 1, there
are multiple possibilities for establishing a single consequence such
as {x rdf:type y}. Furthermore, the structure of these rules allows
for iterative inference over a triple set. That is, each rule may pro-
duce new triples that can be added to the triple set and impact fur-
ther rounds of rule application.
The application of these rules to ontology deltas can be used to find
the smallest delta that can unambiguously represent the difference
between two ontologies. A significant challenge in reasoning over
such differences comes from the presence of blank nodes in ontolo-
gies.

3.2 Rule execution
Simple implementations of OWL 2 RL rules perform poorly in on-
tologies with large ABoxes [6]. However, optimization such as the
parallelisation of backward inference can improve the performance
of rule implementations.
This work focuses on backward-chaining for the reduction of RDF
deltas.

DEFINITION 5 (DELTA REDUCTION USING BACKWARD
CHAINING).

).

LetM ,M ′ be as stated in Definition 1. The reduced delta δR is de-
fined as: a reduced set of triples tI | tI /∈ δRareentailedinM1,2

using the rules in R.

Regardless of the set of considered rules, for each update (i.e. triple)
in the delta, backward-chaining first searches all the rules for a con-
clusion that is compatible with this update. After this, it will look at

Abb Antecedent Consequent
scm-eqc2 {x rdfs :sunClassOf y}{y rdfs :sunClassOf x} {x owl :equivalentClass y}
cls-svf1 {x owl :someValuesFrom y}{x owl :onProperty p}{u p v}{v rdf :type y} {u rdf :type x}
cls-hv2 {x owl :hasValue y}{x owl :onProperty p}{u p y} {u rdf :type x}

Table 1: Entailment rules in OWL2 RF/RDF

rdfs:subClassOf
scm−uni

scm−int

scm−avf1

scm−avf2

scm−svf1

scm−avf2

scm−hv

scm−eqc1

scm−sco

prp−dom

cls−int1

cls−int2

cls0svf1

cls−svf2

cls−avf

cls−hv2

cax−sco

cax−eqc2

cax−eqc2

rdf:type rdfs:subPropertyOf

scm−aqp1

scm−spo

Figure 1: OWL 2 OR trees used to derive conclusions about
rdfs:subPropertyOf, rdfs:subClassOf and rdf:type

the body of these rules trying to find antecedent patterns that con-
tain variables in the same position as specified in the body of the
rule. Only triples that contain properties of the type: rdfs:subClassOf,
rdfs:subPropertyOf or rdf:type are inferable and are checked in this
way. A subset of the OWL 2 RL/RDF rules can be categorised into
three groups based on these properties. Each group contains a set
of rules that have a property of these values as a conclusion and a
body consisting of one or more antecedent patterns that lead to that
conclusion. Figure 1 shows the resulting OR tree. To check if an
update of a particular property type is inferable in the knowledge
base, the set of rules in the appropriate or-tree are applied sequen-
tially until the update is inferred in the knowledge base or no more
rules remain to apply.
Implementation of these rules can be simplified by decomposing
the antecedents into multiple database searches which are termi-
nated when one component fails to return a value.Further simplifi-
cation can be achieved by executing rule patterns in a specific order
starting with the least specific. The antecedents of rule patterns in
OWL 2 RL are either selective, non-selective or recursive. A selec-
tive pattern does not require further execution of the set of rules in
order to entail the desired conclusion. If no triples in the knowledge
base match the selective pattern then no further rules can be applied
to infer that pattern. This contrasts with the recursive pattern which
will generate repeated calls until the desired conclusion is found or
until no more patterns can be executed.

EXAMPLE 1. The rule cls-svf1 has antecedents
(?x owl:someValuesFrom ?y)
(?x owl:onProperty ?p)
(?u ?p ?v)
(?v rdf:type ?y)
and consesquent (?u rdf:type
?x) One step in reaching the consequent is to establish a list of
triples that match the selective triple pattern (?x owl:someValuesFrom ?y),
which will bind only to triples containing owl:someValuesFrom as
a predicate.

rdfs:subClassOfrdf:type rdfs:subPropertyOf

Figure 2: Overlapped OR trees. The round arrows indicate a
recursive call from within the OR tree

EXAMPLE 2. A further step in reaching the consequent of cls-
svf1 is to bind triples that match the non-selective pattern (?u, ?p, ?v).

EXAMPLE 3. Rule cls-svf1 also requires the recursive antecedent
(?v, rdf:type, ?y). This antecedent can be established by consult-
ing any of the rules in the rdf:type or tree shown in Figure 6 which
includes a call to cls-svf1.

Non-selective rule antecedents may trigger the execution of further
rules but are not in themselves recursive. For each triple in the
delta, the purpose of executing the rules is to see if the triple can
be inferred in the updated set (M ′). At this point the OR tree for
that triple can be terminated. In order to achieve this, the order of
executing these patterns starts with selective patterns, followed by
the non-selective patterns and finally the recursive pattern as they
are the most complex in terms of execution.
Recursive patterns are potentially expensive in terms of their execu-
tion because they generate further calls until the desired conclusion
is found or until no more patterns can be executed. In contrast,
the execution of the selective pattern is relatively simple, because a
conclusion such as (?u rdf:type ?x) can be derived from the knowl-
edge base simply by finding that the object of the triple (?x) exists
in the someValuesFrom table. In the case where this object does not
exist, the rest of the patterns in the rule no longer require further ex-
ecution. Thus, avoiding the execution of recursive pattern if exists.
Thus, in this example, the patterns (?x owl:someValuesFrom ?y)
and (?x owl:onProperty ?p) are executed first because they are
both selective patterns and can save the execution of the other pat-
terns if no triple in the knowledge base matches one of these pat-
terns. Subsequently the pattern (?u ?p ?v) and finally the pattern
(?v rdf:type ?y) are matched because they may require further exe-
cution of rules if no triples in the knowledge base match the pattern.
Decomposing the execution of these patterns in this way may avoid
the searches required in executing them as a single query and con-
sequently reduce the execution time [9]. Decomposed sections can
then be executed separately following the order described above.
As a result of the recursive patterns, the different OR trees over-
lap because recursive patterns in one OR tree may require further
application of other rules which may be in other OR trees. Figure
2 shows the overlapped OR trees as concluded from the rules they
contain.

3.3 Blank nodes
Blank nodes, are a special kind of nodes without a name. They
indicate the existence of a thing for which a URI reference or literal

value is not given. Since they are anonymous, blank nodes require
special treatment when matching ontologies. Despite the problems
involved in processing data with these anonymous nodes, the use
of blank nodes in RDF data models is an important feature, which
adds flexibility when expressing information in RDF model.
The first stage in delta construction is the computation and produc-
tion of the explicit delta (i.e. the syntactical differences) between
the two stored models. After the computation of the syntactical
differences, the blank node matching begins, although no order is
required for the two processes as they do not overlap. Blank nodes
are arranged in chains and the matching of these nodes can make
use of both the ID of the node as well as the triple count in its chain.
The equivalence of RDF graphs that contain blank nodes is defined
as [2] :

DEFINITION 6 (EQUIVALENCE OF RDF GRAPHS WITH
BLANK NODES).

).

Two generalized RDF graphsG1 andG2 are equivalent if there is a
bijection f between the sets of triples of the two graphs, such that:
f(uri) = uri for all uri ∈ U1 ⊆ G1

f(lit) = lit for each lit ∈ L1 ⊆ G1

For each b ∈ B1 f maps blank nodes to blank nodes, such that f (b)
∈ B2

The triple (s, p, o) is in G1 if and only if the triple (f(s), p, f(o)) is
in G2

It follows that if two graphs are equivalent then it certainly holds
U1 = U2, L1 = L2 and ‖B1‖ = ‖B2‖. Thus, f shows how each
blank node identifier in G1 can be replaced by a new identifier in
order to give G2

Without blank node matching, any pair of blank nodes from dif-
ferent knowledge bases is considered as a difference between these
data structures. If |Tb1| and |Tb2| are the blank node counts in M
and M ′ respectively then without blank node matching the delta
for two graphs will contain at least |Tb1|+ |Tb2| change operations.
Matching these blank nodes may reduce the size of the delta. The
worst case of blank node matching is when all blank nodes in the
participating triples are not matched. In this case, the delta size
with blank node matching is equal to the delta size without blank
node matching. Thus, if blank node matching does not reduce the
delta size, it will not increase it.

4 Delta generation using pruned rulesets
The use of pruning rules in the context of RDFS knowledge bases
typically follows the process of checking the subject and object of
each triple to see if it exists in the knowledge base. If it does exist
then it is needed for the inferencing process. If not, the triple can
be pruned from the inferencing set. This works well when there
is a large number of triples and few rules - as is the case with the
RDFS entailment rule set a single round of rule application is pro-
vided. Where the rules are more complex, as in the case of OWL2
RL/RDF, pruning the rule set rather than the triples becomes more
important. The contribution of the work described here is the pro-
cess of pruning OWL 2 rulesets in the context of repeated rounds
of rule application. This contrasts with previous approaches to the
problem that focused on pruning the triples themselves.

4.1 Pruning OR trees
The process of pruning OR trees starts with the generation of ∆E.
Each triple in the delta set is checked against the dataset to deter-
mine whether it is inferable, which would allow it to be removed

from the delta set and hence reduce the delta size. This process re-
quires the execution of each rule in the OR tree for the correspond-
ing triple (i.e. rdf:type, rdfs:subclassOf, or rdfs:subPropertyOf). In
a relational datastore implementaton, the execution of these rules
involves joins between two table tables in the database that match
the patterns in these rules. However, some execution of these rules,
and therefore joins between tables in the database, are unnecessary
and can be avoided as they will not lead to the desired conclusion.
In the example shown in Figure 3,M andM ′ are two different ver-
sions of an OWL knowledge base with M ′ being a newer version
of M . The explicit differences (∆E) between the two versions are
shown in the same figure. This example focuses only on the dele-
tion set of triples because the process of reducing this set does not
require further checking to perform correct and valid reduction of
the delta, as would be the case if the insertion set was involved. Re-
ducing the deletion set requires the application of OWL inference
rules against M ′, the newer version of the dataset. The deletion set
in the delta contains a triple (MathTeacher rdfs:subClassOf Staff).
In order to reduce the delta size, the triple needs to be checked to
see if it is inferable in M ′. This involves executing the rules in
the OR tree for the subClassOf property shown in Figure 1 until
this triple is inferred by the execution of one of these rules or un-
til no more rules can be applied. In the former case, the triple is
removed from the delta. In the latter case the triple should remain
in the delta. The other rules used in this process are also identified
in Figure 1. Using as an example the recursive rule scm-sco, the
execution of this rule requires a recursive call to the rule until the
triple is inferred or no more recursive calls can be applied.
The evaluation of the pruning algorithm (Algorithm 1) described in
the work is based on a relational triple store as explained in Section
5. Each time a recursive call is made, a self-join to the subClassOf
table is required in order to infer the triple
(MathTeacher rdfs:subClassOf Staff). Initially, a search is car-
ried out to find if the patterns (MathTeacher rdfs:subClassOf ?c)
and (?c rdfs:subClassOf Staff) exist. If they can be found, the
triple is inferable and can safely be removed from the delta. How-
ever, if triples matching these patterns do not exist then the straight-
forward approach is to find all the patterns that have MathTeacher
in the subject position and apply a recursive call to this rule until
the main triple (i.e.
(MathTeacher rdfs:subClassOf Staff)) is inferred or no more pat-
terns can be generated from the dataset.
If triples such as (MathTeacher rdfs:subClassOf C1),
(MathTeacher rdfs:subClassOf C2) etc. exist in M ′ then these
triples are added to a list of those inM ′ that have MathTeacher in
the subject position. In the context of the scm-sco rule and consid-
eration of the triple (MathTeacher rdfs:subClassOf C1), a recur-
sive call is made to the rule in order to infer (C1 rdfs:subClassOf y)
by searching for the patterns (C1 rdfs:subClassOf ?x) and
(?c rdfs:subClassOf y)
If these patterns do not exist in M ′, then all the patterns that have
C1 in the subject position are generated and this process continues
until the triple is inferred or no further patterns are generated.
This approach requires successive self-joins in the triple store de-
spite which it may not be possible to infer the triple in order to
reduce the delta size. There is potential advantage in avoiding un-
necessary rule execution since this will result in potentially multi-
ple self-joins in the triple store. This paper describes a method of
pruning unnecessary rules in the OR tree. The approach is based
on initially checking whether both the subject and object of a triple
exist in the appropriate positions as defined by the patterns in each
rule before executing that rule. If both subject and object exist
then the rule is applied otherwise it is pruned from execution. The

M M′ ∆d ∆i
(MathTeacher rdfs:subClassOf Staff), (MathTeacher rdfs:subClassOf Teacher), (MathTeacher rdfs:subClassOf Staff), (MathTeacher rdfs:subClassOf Teacher),
(S1 rdf:type Staff), (Teacher rdfs:subClassOf Staff), (S1 rdf:type Staff), (Teacher rdfs:subClassOf Staff),
(Office rdfs:subClassOf Room) (ex:hasColleague rdf:type owl:SymmetricProperty), (Office rdfs:subClassOf Room) (ex:hasColleague rdf:type owl:SymmetricProperty),

(S1 ex:hasColleague S2), (S1 ex:hasColleague S2),
(ex:hasColleague domain Staff), (ex:hasColleague domain Staff),
(Room rdfs:subClassOf Office), (Room rdfs:subClassOf Office),
(Room owl:equivalentClass Office) (Room owl:equivalentClass Office)

Figure 3: Sample data structure before and after update togther with the insert and delete sets

checking avoids the use of joins in the triple store, thereby reducing
the effort involved in further processing.
Generally, to infer the triple (x rdfs:subClassOf y), both x and y
are checked to see if they exist in the subClassOf table in the sub-
ject position of one triple and the object position of another triple
respectively. No joins are needed in this step. If the method returns
true then the rule can be executed, otherwise this rule is pruned and
no further checking of the consequent takes place. If the rule is
pruned, the other rules in the OR tree are checked in the same way
until a true value is applied or no more rules remain in the OR tree.
In the case of a triple such as (S1 rdf:type Staff) in the deletion
set, reduction in the delta size and particularly the deletion set can
be achieved by checking whether the triple is inferable inM ′ or not
by applying rules in the rdf:type OR tree. Before proceeding with
the execution of these rules, the subject (S1) and the object (Staff)
of this triple are checked against all patterns within the rules of the
rdf:type OR tree. The rule prp-dom, for instance, has two patterns
(?p rdfs:domain ?c) and (?x ?p ?y) in its body which infer the
conclusion (?x rdf:type ?c). To check if this rule can be pruned, we
need to check if the subject of the triple (S1 rdf:type Staff) exists
in either the subject column or the object column of the general
triple table. Furthermore, it is necessary to check the object column
in the rdfs:domain table to ascertain whether value Staff exists as
the object of that triple.
Checking the existence of the subject S1 in either position of the
triple table is an exceptional case that appears in all rules contain-
ing a non-terminological pattern (i.e. the property of the triple is a
user-defined property) such as (?x ?p ?y). The reason for check-
ing the existence of the value in either the subject or the object
columns of the general triple table is because triples matching non-
terminological patterns can be inferred by other rules which in-
clude non-terminological patterns in their bodies that reverse the
positions of the values of the subject and object. An example of
such a rule is prp-symp, which has two antecedents in its body:
(?p rdf:type owl:SymmetricProperty) and (?y ?p ?x), and derives
a conclusion (?x ?p ?y). Checking the value S1 of the triple in
only the subject column of the triple table is not enough to decide
if the rule can be pruned as triples matching the non-terminological
pattern (?x ?p ?y) can be concluded by other rules having non-
terminological patterns with the value of the subject in the object
position (?y ?p ?x).
According to the rule prp-dom, checking the subject of the triple
(S1 rdf:type Staff) in only the subject column of the general triple
table will result in pruning this rule as S1 does not exist in the sub-
ject column in this table as shown in Figure 3. However, M ′ con-
tains the triples (ex:hasColleague rdf:type owl:SymmetricProperty)
and
(S2 ex:hasColleague S1) which according to rule prp-symp can
produce as a conclusion the triple (S1ex:hasColleagueS2). This
has S1 in the subject position which is necessary for the execution
of the rule prp-dom.
To summarise, pruning a rule involves checking whether the value
of the subject and the object of the corresponding triples in the delta
set exist in the same position as stated in the patterns of the body of
that particular rule. Only when a rule contains a non-terminological

pattern is the existence of a particular value is checked against ei-
ther the subject position or the object position.

Algorithm 1: Reasoning with pruned rules
Data: t ∈ ∆, orTree
Result: true if the update is inferable in the knowledge base

otherwise false
1 rules = orTree.getRules(t)//get the rules from the corresponding

orTree
2 result = false
3 while rule in rules OR result = false do
4 selectivePatterns = rule.getSelectivePatterns()
5 for selectivePattern ∈ selectivePatterns do
6 if

not{selectivePattern.FindMatchInFixedPositions(update)}
then

7 rule.prune()

8 nonSelectivePatterns = rule.getNonSelectivePatterns()
9 for nonSelectivePattern ∈ nonSelectivePatterns do

10 if not{nonSelectivPattern.FindMatchAnyPosition(update)}
then

11 rule.prune()

12 recursivePatterns = rule.getRecursivePatterns()
13 for recursivePattern ∈ recursivePatterns do
14 if not{recursivePattern.FindMatchAnyPosition(update)}

then
15 rule.prune()

16 result = rule.apply()

17 return result

4.2 Blank node pre-processing
RDF model theory [5] characterises blank nodes as having local
scope within the file that contains them. Such nodes act as existen-
tial quantifiers over a set of resources in which the identifiers of the
blank nodes are not significant. In practice blank nodes are used to
describe multi-component structures represented by RDF contain-
ers, to describe reification (i.e. triples about triples) or to represent
complex information. Given the local scope of blank nodes, it is
not possible to rely on their identifiers being consistent between
successive ontology versions. However, chains of blank node hold
information that may be useful in the process of reasoning about
updates between ontology versions. Loading blank nodes involves
pre-processing these nodes to trace graphs of triples that that con-
tain them. This step is useful for matching blank nodes when com-
puting the differences between two versions of an ontology. Once
the chain of triples has been traced, it is possilbe to extract infor-
mation from it and exploit this to de-anonymise the blanks. This
allows the blank node structure to be considered as part of the rea-
soning process.
Tracing blank nodes is based on the assumption that such chains

dc:title
ex:author

ex:fullName

ex:hasAddress ex:homePage

ex:city
ex:postCode

ex:number ex:street
rdf:type

<http://www.example.com/SW001>

<http://www.example.com/SW001>

_:a “The Semantic Web”

“Sana Al Azwari” _:b

“Richmond
Street”

“4141” “G1” “Glasgow” ex:Address

Figure 4: Blank nodes tree structures

<http://www.example.com/SW001> dc:title “The Semantic Web" .

<http://www.example.com/SW001> ex:author _:a .

_:a ex:fullName “Sana Al Azwari" .

_:a ex:homePage <http://www.strath.ac.uk/~alazwari/> .

_:a ex:hasAddress _:b .

_:b rdf:type ex:Address .

_:b ex:street “Richmond Street“ .

_:b ex:number “4141“ .

_:b ex:postalcode “G1" .

_:b ex:city “Glasgow" .

Figure 5: Blank nodes chain example

start with a non-blank node (i.e. a URI) in the subject position of a
triple. These blank node chains may form a tree such as that shown
in Figure 4 that represents the N-triple shown in Figure 5. If a triple
with a non-blank node in the subject position and a blank node in
the object positon is encountered, the tracing process begins tracing
all connected blank nodes until no more related triples are found.
The length of the chain is equal to the number of triples containing
the connected blank node. The example in 5 gives a chain length of
9. Each chain of blank nodes is held in the triple store along with
the length of the chain in order to use it in the matching process.
Effectively, each chain now has an ID to distinguish the group of
triples that belongs to it.

5 Results and discussion
The process of pruning rules used in ontology updates with OWL 2
RF/RDF rules has been evaluated experimentally using the Lehigh
University Benchmark (LUBM) [4] and the University Ontology
Benchmark (UOBM) [10]. These Semantic Web benchmarks al-
low the generation of datasets of different sizes. LUBM facilitates
the evaluation of Semantic Web tools and is accepted as a standard
evaluation platform for OWL ontology systems. Despite this, it
does not fully support the inference of either OWL lite or OWL DL
profiles of OWL 2. For example, inferencing the allValuesFrom
restrictions and the cardinality constraints cannot be tested using
LUBM datasets. Furthermore, the generated instance data lacks
inter-linkage between isolated subgraphs. In this context, instance
data can be generated to represent individuals for a number of uni-
versities but individuals in one university do not have relations with
individuals from other universities. This limits the benchmark’s
value for scalability tests as inference on connected subgraphs is
harder than that on isolated subgraphs. As a consequence of this,
LUBM is weaker in measuring the capability of inference engines
as it does not trigger all the inference rules supported by these en-
gines.

Figure 6: Reasonong time for 10% updates LUBM data set
with no blank node support

For these reasons, UOBM was developed to extend LUBM and
overcome its limitations with full support for both OWL lite and
OWL DL as well as the generation of a more complex instance
datasets by establishing links between individuals from different
universities.
In the experimental work reported here both LUBM and UOBM
benchmark generators were used to produce three versions nomi-
nally of 1000, 10,000 and 100,000 triples respectively. Three change
ratios on each of these different sizes of datasets were produced.
This involved changing the subsumption hierarchy as well as the
addition of inferable triples. These inferable triples were obtained
by materializing ontology versions and selecting a number of the
inferred triples to be added to the corresponding dataset. Using this
manipulation, four versions for each size of the datasets were gen-
erated: the original version; %5 change ratio version; %10 change
ratio version and %15 change ratio version. Table 2 represents the
feature of the different versions generated using both LUBM and
UOBM benchmarks.
The triple store was implemented in MySQL to handle the RDF
collections and the deltas. Each predicate was represented in a sep-
arate table. Indexing was excluded to preserve the validity of the
use-case. The triple store was loaded and updates were validated
using the Jena framework. All experiment were performed on Intel
Xeon CPU X3470 @ 2.93GHz - 1 cpu with 4 cores and hyper-
threading, Ubuntu 12.04 LTS operating system and 16GB memory.
Computation of the syntactic differences between successive ontol-
ogy versions starts with the generation of δE. This step takes into
account non-blank node triples (i.e. triples that do not contain blank
identifiers in any position). After the calculation of the explicit dif-
ference between the two versions and the blank node matching,
these differences enter a reduction phase where reasoning under
the semantics of OWL 2 RL/RDF is employed for the purpose of
minimizing unnecessary change operations (i.e. insertions or dele-
tions). In addition to the differential functions explained in Sec-
tion 3, two pruning-based functions as proposed in [7] are also em-
ployed. These functions combine the differential functions in [15]
with pruning methods to reduce unnecessary computation during
the reasoning process.
Updates were calculated for each of the sample datasets and in-
dicate that the inference load for ∆Dc exceeded that for ∆ED in
consequence of the latter approach only carrying out inference over
the delete set (Figure 6). Similarly, the process of pruning rules in
the ∆Dc approach is more costly than pruning rules for ∆ED be-
cause the former, being a larger set, presents more pruning oppor-
tunities. The distinction between the UOBM and LUBM bench-

LUBM UOBM
Nominal Original %5 %10 %15 Original %5 %10 %15

size size size
1000 1391 1380 1418 1445 965 970 962 967

10000 10149 10348 10553 10853 10097 9956 10696 10729
100000 100448 102165 109377 113002 101133 101894 103354 107703

Table 2: Triple count in LUBM and UOBM.

Figure 7: Reduction in rules assessed as a consequence of prun-
ing in the 100000 triple structure

Figure 8: Inference time for ∆ED and ∆Dc in the 100000
triple for both LUBM and UOBM

marks is evident from Figure 7. It can be seen here that UOBM
data triggers the execution of more rules than the simpler LUBM
set. Both data sets benefit from the reduction in rule operation that
is supported by the pruning process described above although the
benefit is more pronounced for the latter set. This indicates that the
benefits produced by pruning rules is influenced by the data distri-
bution within a particular dataset. Benchmark data can be deficient
in this respect and may not reflect real world data very accurately.
The variation of inferencing in LUBM and UOBM for the 100000
triple set is shown in Figure 8. As with Figure 7 the results indi-
cate that the UOBM set presents more of a challenge to the infer-
ence process because of its richer structure. The impact of blank
node reduction is shown in Figure 9. This process saves additional
triples in the delta, which has consequences for the performance
time of both rule pruning and inferencing. Where blank nodes are
supported, the cost of both of these tasks is reduced.
Overall the results indicate that both rule pruning and blank node
matching have the potential for reducing the processing required
for generating compact deltas. In the context of generating deltas

Figure 9: Performance time for 100000 triple set with and with-
out support for blank nodes

between ontology versions, pruning rules offers an alternative ap-
proach to pruning triples [15]. It presents particular benefits when
the rule set is large and arranged in an OR tree.

6 Conclusion and future work
The semantics of RDF can be exploited in order to reduce the differ-
ences between RDF versions. However the rich ruleset of ontology
languages such as OWL 2 may provide a challenge to change de-
tection techniques. In particular,the repeated application of a large
ruleset that may be necessary to produce the desired conclusion
can result in performance problems. Blindly applying rules will re-
sult in many such applicatione being void as a result of consequents
that can not contribute to the desired outcome. Advance knowledge
of which rules are applicable and which are not is very important
in avoiding their unnecessary application. This paper describes a
change detection technique using backward-chaining inference. It
produces a small delta using a pruning method that eliminates un-
necessary inference rules during the reduction of the delta size.
A further reduction in delta size is possible through blank node
matching method. This method matches chains of blank nodes be-
tween ontology versions. Excluding matched blank nodes from the
delta is beneficial in reducing the delta size and hence the network
bandwidth when synchronizing ontology versions as well as the
storage overhead for deltas.
The change detection technique described in this work is based on
OR trees and is inhereently parallelisable. The opportunities for
using this approach need to be addressed in future work. The rule
pruning approach can also be extended to incorporate more com-
plex rules and to investigate their effect on delta reduction. An
example of these rules are those that exploit the owl:sameAs rela-
tion, which have been excluded from the current work due to their
execution complexity.
The work presented in this paper describes a framework for delta
production that starts with the process of generating a physical rep-
resentation of successive ontology versions. This reprsentation is

conveniently handled by a relational data store. The process of
blank node matching can then be used to avoid incorporating such
content into the differences that are detected between the versions.
The subsequent stage of delta generation then leads to the final step
in the process, which involves delta reduction.

7 References
[1] S. M. M. Al Azwari and J. Wilson. Consistent RDF updates

with correct dense deltas. In Proc 30th BICOD, 2015.
[2] J. J. Carroll and G. Klyne. Resource description framework

(RDF): Concepts and abstract syntax. 2004.
[3] CVS - concurrent versions system.

http://www.nongnu.org/cvs/. Accessed:
2015-06-10.

[4] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2):158–182, 2005.

[5] P. Hayes and B. McBride. RDF semantics. W3C
recommendation. World Wide Web Consortium, 2004.

[6] A. Hogan and S. Decker. On the ostensibly silent ’W’ in
OWL 2 RL. In Web Reasoning and Rule Systems, pages
118–134. Springer, 2009.

[7] D.-H. Im, S.-W. Lee, and H.-J. Kim. Backward inference and
pruning for RDF change detection using RDBMS. J. Info.
Science, 39(2):238–255, 2013.

[8] M. Klein. Supporting evolving ontologies on the internet. In
XML-Based Data Management and Multimedia
EngineeringŮEDBT 2002 Workshops, pages 597–606.
Springer, 2002.

[9] V. Kolovski, Z. Wu, and G. Eadon. Optimizing
enterprise-scale OWL 2 RL reasoning in a relational
database system. In The Semantic Web–ISWC 2010, pages
436–452. Springer, 2010.

[10] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards
a complete OWL ontology benchmark. Springer, 2006.

[11] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and
C. Lutz. OWL 2 web ontology language: Profiles. W3C
recommendation, 27:61, 2009.

[12] T. Neumann and G. Weikum. x-RDF-3X: Fast querying, high
update rates, and consistency for RDF databases.
Proceedings of the VLDB Endowment, 3(1-2):256–263,
2010.

[13] N. F. Noy, M. A. Musen, et al. Promptdiff: A fixed-point
algorithm for comparing ontology versions. AAAI/IAAI,
2002:744–750, 2002.

[14] M. Völkel and T. Groza. SemVersion: An RDF-based
ontology versioning system. In Proceedings of the IADIS
international conference WWW/Internet, volume 2006,
page 44, 2006.

[15] D. Zeginis, Y. Tzitzikas, and V. Christophides. On computing
deltas of RDF/S knowledge bases. ACM Trans on the Web
(TWEB), 5(3):14, 2011.

http://www.nongnu.org/cvs/

	Introduction
	Related work
	Ontology change detection techniques
	OWL 2 RL/RDF rules
	Rule execution
	Blank nodes

	Delta generation using pruned rulesets
	Pruning OR trees
	Blank node pre-processing

	Results and discussion
	Conclusion and future work
	References

