Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Thyristor based modular multilevel converter with active full-bridge chain-link for forced commutation

Li, Peng and Finney, Stephen and Holliday, Derrick (2016) Thyristor based modular multilevel converter with active full-bridge chain-link for forced commutation. In: Control and Modeling for Power Electronics (COMPEL), 2016 IEEE 17th Workshop on. IEEE, Piscataway, NJ. ISBN 9781509018161

Text (Li-etal-COMPEL2016-Thyristor-based-modular-multilevel-converter-with-active-full-bridge-chain-link)
Li_etal_COMPEL2016_Thyristor_based_modular_multilevel_converter_with_active_full_bridge_chain_link.pdf - Accepted Author Manuscript

Download (406kB) | Preview


Voltage source converter (VSC) such as modular multilevel converter (MMC) has been intensively studied for high voltage direct current (HVDC) applications due to its flexible terminal voltage adjustment, compatibility with weak ac grid and independent active/reactive power control over conventional linecommutated-converter (LCC). However, LCC using thyristors still offers advantages such as high current capability and low semiconductor losses, making it dominant in the construction of large scale converter station. This paper investigates the potential of using thyristor to build the MMC sub-module circuitry, where an auxiliary full-bridge chain-link (FB-CL) is adopted for the controlled transition and forced commutation of main thyristorbridge, forming the proposed active forced commutated (AFC) thyristor cell. The AFC-MMC combines the advantages of LCC and MMC by the hybrid use of thyristor and self-commutated device, including the high power capacity, optimized efficiency, flexible control and enhanced fault-tolerant ability.