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ABSTRACT: Failures in transmission tower’s components usually result in extended disruption of power
supply. Repair is very costly as it involves replacement of the transmission lines’ sections affected. Addition-
ally, it might also entail litigation cost associated with power disruption. Maintenance decisions have to be
taken in time to prevent a failure. At present, maintenance decisions are mainly based on expert’s judgement,

who perform inspections every 10 to 12 years.

On specific sites, tower’s components degrade much faster due to aggressive atmospheric conditions, with
corrosion being the primary cause of deterioration. In this context, data indicating health state from an UK
utility were used to create a Cox model that relates the time before a failure occurs to climatic and atmospher-
ic conditions highly correlated with corrosion. The paper demonstrates the use of the model for predicting re-
maining tower life, and highlights how this can feed into maintenance planning.

1 INTRODUCTION

Transmission towers are the steel-framed struc-
tures supporting overhead power lines, which consti-
tute a significant portion of the electricity transmis-
sion grid. While transmission towers and associated
components are generally highly reliable, if a failure
takes place it usually results in extended disruption
of power supply. Repair is very costly: it involves
replacement of transmission lines’ sections affected.
Additionally it might also entail litigation cost asso-
ciated with power disruption.

Appropriate maintenance decisions have to be
taken in time in order to prevent such a failure. At
present, condition assessment and maintenance deci-
sions are mainly based on the judgement of experts,
who perform inspections and assess component con-
dition on site once every 10 to 12 years. Further-
more, information captured during inspections may
not be detailed or objective enough to ensure a high
level of confidence in asset condition, leading to
conservative replacements occurring potentially be-
fore assets are at risk of failure.

The inspection time is based on lifetime expec-
tancy, which varies between 60 and 80 years. How-
ever, it has been observed that on specific sites, tow-
er components degrade much faster due to
aggressive atmospheric conditions in the area, with
corrosion being the primary cause of deterioration
and a long term failure mode, i.e. icing may cause

catastrophic failure, but does not have a long term
effect.

In this context, this paper presents a statistical
model that considers climatic and atmospheric con-
ditions related to corrosion for estimating tower
steelwork component remaining life, so that preven-
tive maintenance actions can be planned in advance.
The model is a Cox survival model (Cox, 1972)
which strives to relate the time before an event hap-
pens to one or more covariates related to the event.
In this case the event is the failure of a steelwork
component and the covariates are the climatic and
atmospheric conditions.

Many parameters influence deterioration due to
corrosion. According to the literature, the main envi-
ronmental factors involved in the corrosion process
are humidity, temperature, pollution, and airborne
chlorides (ISO 9223, 2012) although other variables
are suspected of having an influence on the process
too. In this paper, data indicating health state from
in-service towers from a UK utility as well as data
on environmental factors on site have been gathered.
Firstly, a correlation study was performed in order to
identify the factors that have the strongest influence
on the corrosion phenomenon. The results of this
study are presented in this paper. Secondly, the
variables presenting the highest correlations were
used to construct a statistical model to predict
remaining life. A Cox model was chosen due to the
nature of the data on health state gathered. The paper
demonstrates the use of the model for predicting



remaining tower life, and highlights how this can
feed into maintenance planning.

The paper is organised as follows: Section 2 pro-
vides an overview of corrosion models in the litera-
ture. Section 3 describes the data gathered for the
study. Section 4 introduces the Cox model and justi-
fies the selection. Section 5 displays the results of
the correlation analysis to identify variables highly
related to the corrosion process. Section 6 shows the
application of the Cox model, and Section 7 pro-
vides some conclusions and future work.

2 CORROSION MODELS: CLASSIFICATION
SCHEMES, STATISTICAL MODELS AND
OTHERS

The main aim of corrosion models in the literature is
to predict the extent of corrosion loss at a specific
location and time as a function of the environmental
factors involved in the corrosion process and the at-
tributes of the material being analysed (Straub and
Faber, 2007).

However, the majority of the models focus on es-
timating the rate of corrosion on specific sites con-
sidering environmental factors. The obtained value is
then utilised to predict the extent of corrosion fre-
quently through a power law:

D(t)= At® (1)

where D(t) represents the corrosion depth for the
considered time interval given in micrometres ((m),
or as a mass in grams per square metre. 4 and b are
constants, 4 being the corrosion rate and ¢ the time
in service. However, it has been noted in the litera-
ture that the power law does not always fit the data
well, moreover, this law does not account for signif-
icant changes in the values of 4 or b in the long term
(Melchers, 2009). Furthermore, because of the for-
mation of corrosion products on the metal surface,
the initial corrosion rate usually decreases over a
long-term period and is not constant.

Roberge et al. (2002) classify the corrosion mod-
els in the literature in three categories: classification
schemes, statistical models, and other models.

Within classification schemes 1SO 9223 (2012)
provides a comprehensive classification system for
the corrosivity of the atmospheres where the metallic
structures are located. The atmospheric corrosivity is
divided into six categories, ranging from C1 (very
low) to C5 (very high) and CX (extreme). The de-
termination of the corrosivity category can be done
either by measurement of the corrosion loss in the
first year of exposure of the structure or, if this is not
possible, by information on environmental condition
and exposure. The key environmental factors to de-
termine the atmosphere corrosivity are the tempera-
ture-humidity complex, the atmospheric salinity, and
the pollution concentration. The rate of atmospheric

corrosion, 4 in equation (1), can be estimated from
the corrosivity category.

Another example of a classification scheme is
given by the PACER LIME algorithm (1980), where
an environmental corrosivity scale was developed
for maintenance planning of aircraft structures. The
corrosivity category was obtained considering dis-
tance from salt water, moisture factors, and pollutant
concentrations. In spite of the fact that both schemes
are straightforward methods, they are limited in their
precision as they do not consider localised mecha-
nisms of corrosion, such as pitting or wind effects.

Statistical models in the literature have been
demonstrated to be effective in areas where data are
gathered, but limited when estimating corrosion rate
in areas with different characteristics, or when avail-
able corrosion information is highly non-linear
(Kenny et al., 2009).

Among others, the International Organisation for
Standardisation (ISO) examined eight years of at-
mospheric corrosion data on different types of met-
als in up to 51 different sites to develop a regression
model for calculating the corrosion rate (Dean and
Reiser, 2002). The regression model considered the
temperature, the relative humidity, the atmospheric
salinity and the pollution concentration. The results
are utilised by the standard ISO 9224 to obtain b in
equation (1), this standard is normally used in con-
junction with ISO 9223.

Similarly to the regression model developed in
Dean and Reiser (2002), the International Coopera-
tive Program on Effects on Materials (ICP Materi-
als) (Tidblad et al., 2000) and The Iberoamerican
Atmospheric Corrosion Map project (MICAT) (Feliu
et al., 1993) developed two regression models for the
estimation of corrosion rates by considering data
from different sites and different types of metals.

Beyond these regression models, other authors
have utilised artificial neural networks to estimate
and predict the rate of corrosion. These models are
also based on experimental data from metal exposed
to outdoor atmospheres in different sites, see Kenny
et al. (2009)) and Pintos et al. (2000). As in the case
of regression models, artificial neural networks have
to be retrained when estimating corrosion rates in
different areas and environmental contexts.

The final category of models considered, other
models, corresponds to those models that try to ex-
plain the mechanics of the corrosion, e.g. marine
aerosol transport and deposition, or wind effects on
local corrosivity.

Feliu et al. (1999) assume the existence of a
steady source of marine aerosol particles and inves-
tigate how these aerosols are deposited and where.
The deposition rate is characterized by the deposi-
tion velocity which depends on the particle size, the
surface roughness, and the wind speed. This model
is applicable within the first few hundred meters



from the aerosol’s source, but after that other factors,
such as rain, affect the chloride concentration.

In Klassen and Roberge (2001) the effect of the
wind on atmospheric corrosivity was modelled by
exposing samples located in different degrees of
shelter from the wind near a highway. A 42% reduc-
tion in average corrosivity was observed between
protected and unprotected samples. Additionally,
Lyon et al. (1995) investigates the corrosion process
within a droplet, and Hayne (1988) studies how pol-
lutants are transferred to metallic surfaces.

3 THE DATA

Data from a condition survey of 1543 towers from
30 different circuits were provided by a UK utility.
From this survey data, only the steel tower compo-
nents have been considered, as the main focus of this
work was to estimate the remaining life of tower
components affected by corrosion. Component con-
dition was assessed through visual inspection and is
given on a scale from 1 to 4, with 4 being the worst
condition.

Starting with this data, a database was built. The
list of variables included in the database is described
below. Information on variables in categories 1 to 4
was provided by the utility. The rest of the variables
refer to environmental factors on site which were se-
lected considering literature review and discussions
with overhead line experts. Data for these environ-
mental factors was gathered through online sources,
including the UK Meteorological Institute (Met Of-
fice), the Department of Energy and Climate Change
(DECC), and online maps.

1. Location (given in GPS coordinates),

2. Condition assessment of tower components:
Tower and crossarm alignments, tower legs, step
bolts, bracing, crossarms, peak, paint-
work/galvanising, flagsocket/step mask.

3. Time since maintenance, which could indicate
time since a component was replaced or since the
tower was painted. In general this variable gives an
indication of the age of the component.

4. Time in service.

5. Minimum distance from corrosion source. This
variable is used as a proxy variable to estimate the
pollutant concentration on site, in particular to esti-
mate the concentration of SO,. The main reason to
consider this variable is that information on pollutant
concentration was not found through online sources.
The considered sources of SO, are: nearest main
road, mines, industrial areas, cities and power sta-
tions. This variable is measured in metres (m).

6. Distance from the sea. This is a proxy variable
given in metres (m) used to estimate the concentra-
tion of airborne salinity.

7. Elevation, measured in metres (m).

8. Distance from closest wind farm. This variable
is measured in metres (m).

9. Wind speed. Records of annual average wind
speed were found for weather stations close to the
tower sites. This variable is measured in kilometres
per hour (km/h).

10. Extremes of temperature. This variable con-
tains the mean of the daily difference between max-
imum and minimum ambient temperatures over all
years the tower is in service.

4 THE COX MODEL
4.1 Model background

The Cox regression model is a survival analysis
model (Cox, 1972). This type of model strives to re-
late the time before an event happens (in this case a
failure of a transmission tower steelwork compo-
nent), to one or more covariates (explanatory varia-
bles) related to the event. The Cox model estimates
survival curves when considering several covariates
simultaneously, e.g. temperature, pollution concen-
tration, airborne salinity concentration, etc.

This model provides the expression of the risk at
a given time ¢ for any individual with a given speci-
fication of a set of covariates (Kleinbaum and Klein,
2005). The risk at time ¢ is given by the product of
two quantities, the baseline hazard function (%(2))
which represents the common risk to all the individ-
uals under study, and the effect of the covariates on
the risk, which is given by the exponential of the lin-
ear combination of the covariates. The expression of
the hazard is shown below:

h(t) = ho (t)e=FiXi )

where X;, i=1,...,p, represents the covariates and f;
represents the effect of the covariate on the risk of
the event of interest happening, in this case the fail-
ure of a steelwork component.

The baseline function depends on ¢, and the co-
variates are time-independent in this expression.
Nevertheless it is possible to consider time-
dependent covariates in the Cox model. Additional-
ly, the baseline function can be replaced by a given
function if it is known, e.g. the Weibull distribution.
However it is possible to work with an unspecified
baseline function in a Cox model and still produce
reasonably good estimates of the survival curves and
the hazard function (Kleinbaum and Klein, 2005).

The hazard function can be converted to a corre-
sponding survival function, which is the basis for de-
termining the adjusted survival curves. The expres-
sion of the survival function in a Cox model is:

2 BiXi
ste1=[sot0F " ®

where Sy(?) is the baseline survival function.
Typically, when computing survival curves, the
value chosen for a covariate being adjusted is an av-



erage value, in particular the mean. Therefore, the
estimation of the survival function is done consider-
ing the mean of the covariate, and the general ex-
pression for this estimation is the following:

so=[0f @

where 5(t), $o(t)and ,[Af,. are the estimates of the
survival function, the baseline survival function, and
the hazard ratios respectively. Additionally X, repre-
sents the mean of the ith covariate. Alternatively, it
is possible to obtain a survival curve for a particular
individual by providing the specific values of the
covariates for that individual.

4.2 Rationale for the selection of the Cox model

As described in Section 2, in the literature a number
of models used for prediction of corrosion progress
are linear regression models. This type of model
generally tries to estimate the rate of corrosion con-
sidering environmental conditions on site.

However, data gathered during this project are not
suitable for the development of a linear regression
model, as the condition data available is a health in-
dex ranking between 1 and 4, not a measurement of
depth of metal lost over time.

Unlike linear regression models, the outcome of
the Cox regression model is the time to an event of
interest, in this case the failure of the steelwork
component. Moreover, the Cox model uses failure
times as well as censored failure times on the indi-
viduals of interest. Censored failure times refer to
observed survival times that are shorter than the time
to failure for those components, i.e. the true failure
time is unknown because the last time the compo-
nents were observed they were still operative.

Additionally, the Cox model is a semi-parametric
model, where the baseline hazard function does not
need to be specified if it is unknown. Even though
the baseline hazard is not specified, the Cox model
is a robust model that will closely approximate the
results obtained with the correct parametric form fol-
lowed by the data, e.g. if the data follow a Weibull
distribution, the Cox model will give results compa-
rable to those obtained using a Weibull model
(Kleinbaum and Klein, 2005). In this particular study
the baseline hazard could have been obtained
through the standards ISO 9223 (2012) and 9224
(2012), however the data gathered for this project do
not allow the use of the equations presented in those
standards. To apply these equations, metal loss
measurements and other environmental information
such as pollution concentration and airborne chlo-
rides concentration are needed. However proxy vari-
ables are used instead for the environmental parame-
ters as precise measurements for these two variables
could not be collected.

5 CORRELATION ANALYSIS

A correlation study was performed to select the envi-
ronmental factors with the highest influence on the
COrrosion process.

The variables described in Section 3 can be con-
sidered as two categories: those indicating compo-
nent condition, i.e. category 2; and those thought to
have an influence on the corrosion process, i.e. cate-
gories 3 to 10. The aim is to investigate the level of
influence that each variable in the second group has
on the condition variables in the first group, i.e. how
much the level of corrosion in a component can be
attributed to an influencing variable. The variables
with the strongest influence were selected to be co-
variates of the Cox model.

5.1 Kendall correlation

As a first step towards the selection of the covari-
ates, the Kendall correlation coefficients between the
variables indicating component condition and the
environmental factors were obtained. The Kendall
correlation coefficient was selected because it can be
used with discrete and continuous variables and does
not require that the variables follow a Normal distri-
bution (Corder and Foreman, 2009). This coefficient
provides a value between -1 and 1. However its val-
ues are not based on a linear scale, therefore the in-
terpretation of the strength of the relationship be-
tween two variables is not straightforward, e.g. a
coefficient of 0.6 does not indicates a relationship
twice as strong as when the coefficient is 0.3. Con-
sequently, it is important to also test if any relation-
ship is significant, i.e. strong enough to be consid-
ered a true result.

The values for the Kendall correlation coefficient
for the different pairs of variables are not shown in
this paper due to space limitations, although the
main results are provided:

—In general, there are no very strong correlations.
The strongest correlation factor is -0.351, with the
smallest statistically significant correlation factor be-
ing -0.062. This suggests there is no single factor
which dominates the corrosion process.

—The variable extremes of temperature seems to
present the strongest relationship with component
condition. In all cases this relationship is direct, i.e.
when the average difference between daily minimum
and maximum temperature increases, the deteriora-
tion of steelwork components increases.

— Minimum distance from corrosion source has in
in general a direct relationship with the deterioration
state of the components, i.e. when the distance from
the corrosion source increases the deterioration state
also increases. This was an unexpected result, given
that this variable is used as a proxy for the pollution
concentration (SO, concentration) which is known to
increase corrosion.



—Distance from the sea has a direct relationship
in most cases. This is also an unexpected result.
However the correlation is weak in many cases.

— Average wind speed shows an inverse relation-
ship with the deterioration state in most cases, i.e. in
areas with lower wind speeds the deterioration state
is higher. A possible explanation could be that water
and pollutants will be deposited and remain on the
tower surface for longer at reduced wind speeds.

Considering these results and taking into account
that in the literature the variables temperature, hu-
midity, pollution concentration, airborne chlorides
concentration, and wind speed/direction are identi-
fied as the main factors influencing the corrosion
process, it was decided to include temperature and
wind speed as covariates in the Cox model. Wind di-
rection was not considered, as information about this
variable could not be gathered through online
sources. Additionally it was decided to carry out fur-
ther analysis for the following variables: minimum
distance from corrosion source as a proxy variable of
pollution concentration, distance from the sea as a
proxy variable of airborne chlorides concentration,
and magnetic fields. The latter one was suggested
during discussion with overhead line experts.

5.2 Correlation between minimum distance from
corrosion source and component condition

Results from the Kendall correlation coefficient in
section 5.1 were unexpected, as the variable mini-
mum distance from corrosion source seems to have a
direct relationship with the deterioration state of the
steelwork tower components. It was decided to in-
vestigate if the age had an impact on the results.

Figure 2 displays the scatter plot of the variable
time since maintenance, which gives an indication of
the age of the components, and the variable mini-
mum distance from a corrosion source.
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Figure 1. Scatter plot of time since maintenance/distance from corro-
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Figure 1 shows that older and newer components
are situated at different distances from corrosion
sources. The oldest components are situated at a
maximum distance of 5 km, however components
around 30 years of age can be located anywhere be-

tween 0 km and 13 km. Moreover, the Kendall cor-
relation coefficient value for these two variables is
-0.130, and it is a significant relationship (see sec-
tion 5.1), consequently newer components are situat-
ed at larger distances and vice versa. In summary,
the age of the components does not seem to have an
effect on the results of the correlation analysis.

Taking into account the results, it was decided to
discard this variable as it did not provide a good in-
dication of the pollution concentration around the
area where towers are located.

5.3 Correlation between distance from the sea and
component condition

Bearing in mind the results described in section 5.1,
the potential impact of the age of the components on
the result for the variable distance from the sea was
investigated as well. Figure 2 displays the scatter
plot of time since maintenance and distance from the

sea.
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Figure 2. Scatter plot of time since maintenance/distance from the sea

Similarly to the results in section 5.2, this figure
shows that older and newer components are situated
at different distances from the sea. In fact, compo-
nents 60 years of age or older are situated less than
20 km from the sea, but also components around 18
years of age. The results of the Kendall correlation
coefficient, -0.104, show an indirect relationship be-
tween these two variables, and it is a significant rela-
tionship. Therefore newer components are situated at
larger distances and vice versa. Hence, the age of the
components is not influencing the results of the cor-
relation analysis for the variable distance from the
sea. Accordingly, this variable was discarded as it
did not provide a good indication of the airborne
chloride concentration around the area where towers
are located.

5.4 Correlation between magnetic fields and
component condition

The magnetic field in the vicinity of overhead line
conductors depends on the conductor geometry, and
current flowing in the conductor. Figure 3 shows



typical magnetic fields for different overhead lines,

which have been sourced from the EMFS website

(http://www.emfs.info/). The magnetic field decreas-

es with the distance from the centre of the conductor
Overhead lines: typical magnetic fields
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Figure 3. Typical magnetic fields for overhead lines (source EMFS)

Considering this information, tower components
were divided into three groups based on their dis-
tance to the conductor with the aim of investigating
if there is a relationship between magnetic field and
component condition. The three groups are described
below:

—Group 1 (distance from the centre of the con-
ductor grouping 0 to 5 m) comprises left and right
circuit components and crossarms.

— Group 2 (distance from the centre of the conductor
grouping 5 to 8 m) refers to the peak.

— Group 3 (distance from the centre of the conductor
grouping more than 8 m) refers to tower legs

Only components with similar age were consid-
ered to determine if the magnetic field has an impact
on the component deterioration. To compare the de-
terioration of the components in different magnetic
field groups, a Kruskal-Wallis test was performed.
The Kruskal-Wallis test is the non-parametric ver-
sion of the ANOVA. The reason for utilising this test
is that the variables are not normally distributed.
This test contrasts the hypotheses:

Hy : The medians of the groups are the same

H, : The medians of the groups are different

The p-value of this contrast is 0.372, which is
greater than o = 0.05 (significance level). Therefore,
there are no significant differences in the deteriora-
tion of the components belonging to different mag-
netic fields groups.

In spite of this result, after discussions with over-
head line experts, it was decided to include this vari-
able as a covariate in the Cox model due to its poten-
tial for impact on steelwork deterioration.

6 COX MODEL FOR TOWER COMPONENTS

For the fitting of the Cox model to the data the fol-
lowing variables are introduced:

1. Vector of covariates. This vector contains da-
ta on the variables wind speed, magnetic fields and
the variable extremes of temperature.

2. The time since maintenance.

3. A variable containing Os or 1s depending on
if the component is in deterioration state 4 or in dete-
rioration states 1 to 3. It is considered that state 4
represents the failure of the component, while states
1 to 3 are transitional states towards the failure.
Therefore, the value 0 of the variable corresponds to
the failure of the component, and the value 1 indi-
cates that the component has not reached the end of
its life. The age of the latter components is hence re-
garded as a censored time, given that the failure time
is not available.

It should also be noted that the present paper con-
siders data which represents a snapshot of the state
of the components at a given moment in time. Time-
independent covariates are therefore more appropri-
ate. Therefore, equations (2) — (4) are applied in this
section.

Table 1 displays the estimation of the parameters
Bi, as well as the exponential of the estimation. The
exponential of these values gives an indication of the
increase in failure hazard per unit of increase in the
correspondent covariate.

Table 1. Estimation of the effect of the covariates

Covariate ﬁ Exp( ,é )
Extreme of temp. 09111 2.4870
Wind speed -0.1224 0.8848
Magnetic fields -0.1314 0.8769

The biggest contributor to failure hazard rate is
the variable extremes of temperature. This result
agrees with the correlation study in section 5. The
failure hazard will increase by 2.4870 times per 1°C
increase in the range of temperatures experienced by
the component in a day, considering annual averag-
es.

If wind speed is considered, the value in Table 1
indicates that when the average of wind speed in-
creases by lkm/h, on an annual basis, the failure
hazard will decrease by 0.8848 times. This result al-
so agrees with the previous correlation study.

Finally, the value for the variable magnetic fields
implies that the failure hazard decreases by 0.8769
times when the distance from the conductor group-
ing increases. Although the results in the previous
section show no differences between the magnetic
field groups in terms of average deterioration, the es-
timated values in Table 1 shows that magnetic fields
do have an effect on the failure hazard, justifying its
inclusion in the model.

Figure 4 presents the estimated Survival function
(see equation (4)) for the whole sample of circuits
and steelwork components for the covariates’ means.
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Figure 4. Survival function for the sample

The survival function is plotted as a step function.
This is due to the semi-parametric nature of the Cox
model where the expression of the baseline hazard is
unknown and it is just estimated at points in time
where one or more failures have occurred.
Therefore, between failure times, the survival
probability stays constant. At failure times the
survival probability is obtained by taking into
account the number of failures at that instant of time.

It is also possible to obtain the survival curve for
a particular component/circuit with the Cox model.
For that purpose it is necessary to estimate the base-
line cumulative hazard function, i.e. Hy(t), the pa-
rameters Pj, and introduce the values of the covari-
ates X; for the particular individual in equation (4),
in this case a component in a specific tower. As an
example, let us suppose that a tower is located in an
area were the variables of interest have the following
values: Annual average of extremes of temperature:
6.5 °C, annual average wind speed: 16.2km/h. Let us
also consider the crossarms within this tower, which
are located at a distance between 0 and 5 m from the
conductor grouping, therefore the value for the vari-
able magnetic fields is 1. The expression of the sur-
vival curve for this particular component is obtained
from (4) and is given by:

R R 2.4870*%6.5+0.8848*16.2+0.8769*1
5(t) = fexol- Ao 0))F

Figure 5 displays the survival curve for this com-
ponent:
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Figure 5. Survival function for the crossarms in a particular circuit

The survival probability in this case decreases
faster. This is due to the fact that the wind speed in

the area is lower than the average wind speed, and
the difference in daily maximum and minimum tem-
peratures is higher than the average for the whole
sample. This component has over 80% chance of
failing before 55 years of age.

Apart from the Survival function, the mean resid-
ual life (mrl) per type of component/circuit was also
obtained. To do so, a Weibull distribution was fitted
to the data (failure times and censored times), as
there is not a straightforward method to obtain this
value with a Cox model. Figure 6 displays the fitting
of the Weibull distribution to the Survival function
for the whole sample.
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Figure 6. Cox and Weibull survival functions for the sample

Visually, the fitting of the curve seems to be a
good approximation.

The mrl is obtained by applying the following ex-
pression:

[ Flek fe*"{‘%ﬂ”

BT
B

where ¢ represents the age of the component, F(t)
is the Weibull survival function at timet 4 and p
are the estimated parameters of the Weibull
distribution.

As an example of the calculation of the mri, if all
the circuits in the sample are considered (Figure 6),
the mrl of a component 30 years of age is 36 years.
This value refers to an average tower/component of
the sample. The mrl can be calculated for specific
circuits, however enough failure data from circuits
with similar characteristics must be available.

Space constraints mean this cannot be covered in
detail here but the residual life per component as
well as the Survival curves can be used by the utility
as a maintenance horizon, e.g. the outputs of the
model can be utilised to increase inspection frequen-
cy in particular areas, or to plan in advance the re-
placement of certain components.




7 CONCLUSIONS AND FUTURE WORK

This paper presents a Cox model to estimate the sur-
vival probability of steel tower components as well
as the mean residual lifetime. Additionally, an indi-
cation of the increase in failure hazard per unit of in-
crease of every covariate, i.e. temperature, wind
speed, or magnetic field, is obtained. The outputs of
the model allow for determining sites where compo-
nents are at higher risk so that maintenance interven-
tions can be prioritised, e.g. replacement of tower
steelwork components or frequency of application of
protective painting. Quality of steelwork from dif-
ferent years of installation could be also inferred.

The proposed model provides estimates of the
tower steelwork component survival curves which
experts agree to be reasonable. However, the infor-
mation used to create the model brings uncertainty to
the results. The Cox model is derived from infor-
mation about the degradation state of steelwork
components for a number of towers in a UK utility
network. The assessment of the degradation of any
component is obtained through visual inspection of
the components and is given on a scale of 1 to 4. It
has been assumed here that the scale is indicating de-
terioration due to corrosion. However inspection re-
ports provided by the utility show that this is not al-
ways the case, as bird activity, etc. is also factored
into the condition assessment. Furthermore, at pre-
sent a snapshot of the state of the components has
been provided. Ideally, information on the state of
the same components across different years should
be taken into account, as well as the environmental
conditions at the time. Finally, the proxy variables
for the pollution concentration and airborne chloride
concentration do not seem to explain the changes in
deterioration of the steelwork components. It may be
possible to take measurements or find better proxy
variables for these factors in the future.

As possible future work, validation of the results
and comparison with other data-driven techniques is
of interest. Additionally, information regarding con-
dition states 1 to 3 could also be considered in the
model, as this information is currently excluded by
the Cox model. As one approach, Cox models could
be developed individually for the transition into state
2 and the transition into state 3, in the same way as
the current model predicts the transition into state 4.
Finally, the model could be extended to other com-
ponents in the tower.
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