
3. FLIM Algorithms
FLIM generates images by analyzing the exponential decay (fluorescence lifetime) of fluorescence

intensity (from fluorescent proteins tagged on biological samples) at each camera pixel. Lifetime can

be extracted from an exponential histogram, as shown in the figure, by the following algorithms.

A. Iterative algorithms

B. Non-iterative algorithms

Algorithm Function

LSM[1]

GA[2]

GPU Acceleration of non-iterative and iterative algorithms

in Fluorescence Lifetime Imaging Microscopy
Gang Wu,1,2 Thomas Nowotny,1 Yu Chen,3 and David Day-Uei Li2

1University of Sussex, School of Engineering and Informatics, Brighton, UK
2University of Strathclyde, Centre for Biophotonics, Glasgow, UK

3University of Strathclyde, Physics, Glasgow, UK

1. Summary
Graphics Processing Unit (GPU) enhanced Fluorescence Lifetime Imaging Microscopy (FLIM)

algorithms are presented, and their results are compared with the latest research results. The GPU

based approaches are suitable for highly parallelized sensor systems and promising for high-speed

FLIM applications.

2. FLIM System
FLIM Analysis System is used to extract the lifetime of fluorescent samples in biological research and

medical diagnosis. It contains a light source (e.g. laser), a photon detector, a time-correlated single-

photon counting (TCSPC) camera, lifetime analysis software, and a PC with graphical user interface

(GUI).

T
C

S
P

C

Sample

Laser

Lifetime

analysis

This work

GPU

CPU with GUIDetector

A)(0tf

)(1tf

)(2tf

)(3tf

)(2Mtf

)/exp(1(*)/exp(*)(

)/exp()(

**) DDFD tfAtfAtfor

tAtf









1,...,2,1,0,1  Mjhtt jj

)(tf

0N 1N
2N

1MN

0t 1t 2t 1Mt3t 2Mt0

)(1Mtf









1

0

22)(
M

j i

jj YN














GAN

i

M

j ji

jji YN

1

1

0

2

,

,2)(










n

k

t

kj
kjeAY

1

/
)(



4. GPU Implementation

Lifetime Image

Pixel(0,N)

0n
)(tf

Time

…1n Mn

FLIM Analysis

Grid

Block(0,0) Block(N,0)

Block(N,N)Block(0,N)

… …

…

…

Block(0,N)

Thread(0,0)
…

Thread(M,0)

GPU Implementation

A. Block-based iterative algorithms

To realize parallel FLIM analysis in a GPU, the histogram

for each pixel is analyzed by a separate block of CUDA, as

shown in the Figure and each such block contains 256

threads that roughly correspond to the 256 time bins.

5. Simulations and FLIM data analysis

A. Simulation

2000 photons were collected, the number of time bin was 256, the width of each time bin was 100ps

and the size of the image was 512 by 512 pixels.

B. Experiment

We demonstrate the performances of the GPU based BCMM on two-photon FLIM images of gold

nanorods (GNRs)-Cy5 labelled A375 cells. GNRs were conjugated with Cy5 labelled oligonucleotide

through a procedure described elsewhere [7]. The A375 cells were incubated with nanoprobes (GNR-

Cy5) and fixed with paraformaldehyde. FLIM was performed using a confocal microscope (LSM 510,

Carl Zeiss) equipped with a time-correlated single photon counting (TCSPC) module (SPC-830, Becker

& Hickl GmbH).

C. Discussion

FLIM analysis is well-suited for GPU acceleration because it is highly parallelizable. Each pixel in a

FLIM frame can be processed independently of any other pixel, and, depending on the details of the

algorithm, there is a lot of room for parallelization even within the processing of an individual pixel.

(a) (b)

(c) (d)

1 .5

3

ns
4.5

τ: IEM (στ/τ)AVG = 0.15τ: Ideal

τ: LSM (στ/τ)AVG = 0.03τ: CMM (στ/τ)AVG = 0.026

6. Conclusion
In this project, we have proposed a flexible and reliable processing strategy for FLIM analysis using

GPU acceleration, which can replace CPU-only solutions, allowing considerable speed improvements

without loss of quality. The performance of the tool has been verified with synthesized and

experimental data, demonstrating substantial potential for GPU acceleration in rapid FLIM analysis.

7. References
[1] A. A. Istratov et al., Rev. Sci. Instrum. 70(2), 1233-1257 (1999).

[2] P. J. Verveer et al., Biophys. J. 78(4), 2127–2137 (2000).

[3] D. Li et al, J. Opt. Soc. Am. 25(5), 1190-1198 (2008).

[4] D. Li, et al., J. Opt. Soc. Am. 26(4), 804-814 (2009).

[5] A. Leray, S. Padilla, et al., PLoS ONE. 8(7), e69335 (2013).

[6] D. Li, H. Yu, and Y. Chen, Opt. Lett. 40(3), 336-339 (2015).

[7] Y. Zhang et al., Faraday Discuss., doi: 10.1039/C4FD00199K (2014).

IEM [3] CMM [4] PM [5] BCMM1 [6] BCMM2 (τD unknown) [6]

10

1

0

)(












M

M

j

jj

IEM
NN

NCh

 h
N

jN

c

M

j

j

CMM)
2

1
)(

(

1

0








DDFDAvg

D

D

F

ff

uv

vu








)1(

)(

1








0N

Nh

NK

XN

Avg

D

D

F















0

2]/)(4[5.0

N

Nh

KXNGGG

Avg

F







































1

0

2

20

1

0

1

0

422222222222

1

/

0000

)
2

(,,/,)(,)(

)]1)(/[()]1)(1([

)()(,)(/)sin()(,)(/)cos()(

M

j

j

j

j

M

j

jjj

M

j

jj

DFDDFFFDDFDD

n

i

t

i

TTTT

N
t

CY
NKX

NXKY
GhNKNtCXNCN

uuuuuuf

eAtfdttfdtwttfvdttfdtwttfu i





M is the number of time bins, Nj and tj are the photon number and the delay time of the jth bin, respectively, N0 is the count number of the first

time bin, h is the width of the time bin, Cj is the coefficient of Simpson's rule, and τD is the lifetime of the donor.

n is the number of lifetime components, Ni,j is the photon number of the jth bin

of the ith pixel and NGA is the number of pixels in the same segment for GA.

B. Thread-based non-iterative algorithms

The histogram of each pixel is analyzed by an independent

CUDA thread, as shown in figure below, and each block

contains 512 threads. This configuration allows analyzing a

large number of pixels simultaneously, the exact number

being determined by the number of streaming multi-

processors

F
L

IM
im

ag
es

o
f

si
n

g
le

-

ex
p

o
n

en
ti

al
d

ec
ay

s

Im
ag

es
 b

as
ed

 o
n

 s
y

n
th

es
iz

ed

b
i-

ex
p

o
n

en
ti

al
 d

at
a

 (a) (b)

 (c) (d)

0.5

2

ns
3.5

τAVG: Ideal τAVG : Phasor (στ/τ)AVG = 0.048

τAVG : BCMM (στ/τ)AVG = 0.046 τAVG : Global (στ/τ)AVG = 0.013

Experiment results with CPU-OpenMP and GPU

Target Algorithm CPU (ms) GPU (ms)
Speedup

(times)

τF

BCMM1

(τD fixed)
111.24 5.4 20.6

BCMM2

(τD unknown)
169.3 9.3 18.2

Experiment configurations

Image Size Bin Number
Bin Width

(ps)

Laser Pulse

(MHz)
τD (ns) τF (ns)

256x256 256 39 80 ~ 2.93 +/- 0.16 ~ 0.1

0

100

200

300

400

500

600

IEM CMM Phasor BCMM

P
ro

ce
ss

in
g

 t
im

e
(m

s)

CPU GPU

N
o

n
-i

te
ra

ti
v

e
al

g
o

ri
th

m
s

0

20

40

60

80

CPU GPU

P
ro

ce
ss

in
g

 t
im

e
(s

)

LSM GA

It
er

at
iv

e
al

g
o

ri
th

m
s

CUDA profiler features for each algorithm

Algorithm Transfer (ms) Computation (ms) Occupancy

IEM

18.7

3.7 99.0%

CMM 4.7 96.0%

Phasor 4.1 99.0%

BCMM 7.6 99.2%

LSM 1151.5 54.1%

GA 3295.1 52.9%

