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Abstract— This paper presents an evolutionary approach to
solve the multi-objective min-max problem (MOMMP) that
derives from the maximization of the Belief in robust design op-
timization. In evidence-based robust optimization, the solutions
that minimize the design budgets are robust under epistemic
uncertainty if they maximize the Belief in the realization of
the value of the design budgets. Thus robust solutions are
found by minimizing, with respect to the design variables,
the global maximum with respect to the uncertain variables.
This paper presents an algorithm to solve MOMMP, and
a computational cost reduction technique based on Kriging
metamodels. The results show that the algorithm is able to
accurately approximate the Pareto front for a MOMMP at a
fraction of the computational cost of an exact calculation.

I. INTRODUCTION

G IVEN the model of a system or process, the lower
expectation in the realization of the value of a particular

performance index for that system or process can be defined
as the degree of belief that one has in a certain proposition
being true, given the available evidence. In the framework of
imprecise probabilities, it can be seen as a lower bound to
the cumulative distribution function of classical probability
theory. Its use is therefore interesting in engineering design,
as it gives the lower limit of the confidence that the design
budgets under uncertainty will be below a given threshold. In
this framework both epistemic and aleatory uncertainties can
be treated even when no exact information on the probability
distribution associated to a particular uncertain quantity is
available. Stochastic variables, with associated probability,
are replaced by a multivalued mapping from a collection of
subsets of an uncertain space U into an envelope defined by
the lower and upper expectation (Belief and Plausibility in
the case of Evidence Theory) in the realization of a particular
value.

In the preliminary design of an engineering system the
type of uncertainty is often mainly epistemic in nature, as
in a later stage of the design more information is generally
available. It is therefore natural to assign belief masses to
intervals of values rather than precise probabilities. The
main drawback with the use of multivalued mappings is
that the computation of the lower and upper expectations,
Belief and Plausibility in the case of belief functions, has
a complexity that is exponential with the number of un-
certain variables. Recently, Vasile et al. [1] proposed some
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strategies to obtain an estimation of the maximum Belief
with a reduction of the computational cost. The approach
starts by translating an optimization under uncertainty into
a single or multi-objective min-max problem equivalent to
a worst-case scenario optimization problem. Although this
approach avoids the intrinsic exponential complexity in the
computation of the Belief, it still requires a high number
of function evaluations. This paper presents an algorithm
that implements special heuristics to increase the probability
to find the exact global Pareto front in the case of a min-
max problem on multi-modal functions. Also, it presents
an approach based on Kriging surrogate models to reduce
the computational cost associated to the solution of the
MOMMP. The combination of evolutionary algorithms and
surrogate models has been object of considerable research
efforts in the last decade, as summarized in [2], [3]. How-
ever, to the authors’ knowledge, not many papers deal with
surrogate-based min-max optimization. Ideas of combining
evolutionary optimization and surrogate modelling to solving
min-max problems were proposed in [4], [5]. More recently
Marzat et al. [6] proposed a non-evolutionary approach using
Kriging metamodels to reduce the computational cost of the
solution of single objective min-max problem in worst-case
scenario optimization.

The approach proposed in this paper addresses specifically
multi-objective min-max optimization problems and differs
from previous work in the way the surrogate model interfaces
with the optimization algorithm. As it will be shown, the ulti-
mate goal is to build a surrogate of the maximization process.
The paper starts with a brief introduction to Evidence Theory
and its use in the context of robust design optimization in
Section II. Section III introduces an algorithm to compute
a multi-objective optimal design solution under uncertainty.
Section IV explains the use of surrogate modelling to reduce
the computational cost in multi-objective optimization cases.
Section V presents the results on some scalable test cases
that were applied to assess the performance of the proposed
algorithm.

II. EVIDENCE-BASED ROBUST DESIGN OPTIMIZATION

Evidence Theory (also known as Dempster-Shafer Theory)
[7] allows to adequately model both epistemic and aleatory
uncertainty when no information on the probability distribu-
tions is available. For instance, during the preliminary design
of an engineering system, experts can provide informed opin-
ions by expressing their belief in an uncertain parameter u
being within a certain set of intervals. The level of confidence
an expert has in u belonging to one of the intervals is



quantified by using a mass function generally known as Basic
Probability Assignment (bpa). Note that the bpa is a belief
rather than an actual probability. All the intervals form the
so-called frame of discernment Θ, which is a set of mutually
exclusive elementary propositions. The frame of discernment
can be viewed as the counterpart of the finite sample space
in probability theory. The power set of Θ is called U = 2Θ,
or the set of all the subsets of Θ (the uncertain space in
the following). An element θ of U that has a non-zero bpa
is called focal element. When more than one parameter is
uncertain, the focal elements are the result of the Cartesian
product of all the elements of each power set associated to
each uncertain parameter. The bpa of a given focal element
is then the product of the bpa of all the elements in the
power set associated to each parameter. All the pieces of
evidence completely in support of a given proposition form
the cumulative belief function Bel, whereas all the pieces of
evidence partially in support of a given proposition form the
cumulative plausibility function Pl. The Belief Bel and the
Plausibility Pl functions are defined as follows:

Bel(A) =
∑
∀θi⊆A

m(θi) (1)

Pl(A) =
∑

∀θi∩A6=0

m(θi) (2)

where A is the proposition about which Belief and Plausi-
bility need to be evaluated. For example, the proposition can
be expressed as:

A = {u ∈ U | f(u) ≤ ν} (3)

where f is the outcome of the system model and the
threshold ν is the desired value of a design budget (e.g. the
mass). Thus, focal elements intercepting the set A, but not
fully included in it, are considered in Pl but not in Bel.
It is important to note that the set A can be disconnected
or present holes, likewise the focal elements can be discon-
nected or partially overlapping.

An engineering system to be optimized can be modelled
as a function f : D × U ⊆ <m+n → <. The function
f represents the model of the system budgets (e.g. power
budget, mass budget, etc.), and depends on some uncertain
parameters u ∈ U and design parameters d ∈ D, where D is
the available design space and U the uncertain space. What
is interesting for the designers is the value of the function
f for which Bel = 1, i.e. it is maximum. This value of the
design budget is the threshold νmax above which the design
is certainly feasible, given the current body of evidence. If q
objective functions exist, then the following problem can be
solved without considering all the focal elements:

νmax = min
d∈D

F = min
d∈D

[max
u∈Ū

f1(d,u), . . . ,max
u∈Ū

fq(d,u)]T

(4)
Problem in 4 is a multi-objective min-max over the design
space D and the uncertain space Ū , where Ū is a unit
hypercube collecting all the focal elements in a compact set

with no overlapping or holes. The transformation between U
and Ū is given by:

xU =

(
buU,i − blU,i

)(
buŪ,i − blŪ,i

)xŪ,i + blU,i −
(
buU,i − blU,i

)(
buŪ,i − blŪ,i

)blŪ,i (5)

where buU,i and blU,i (resp. buŪ,i and blŪ,i) are the upper and
lower boundaries of the i−th hypercube to which xU,i (resp.
xŪ,i) belongs.

III. A MULTI-OBJECTIVE MIN-MAX EVOLUTIONARY
ALGORITHM

Problem in 4 searches for the minimum of the maxima
of all the functions over Ū and represents an example of
worst-case scenario design optimization. The maximum of
every function is independent of the other functions and
corresponds to a different uncertain vector. Therefore, all
the maxima can be computed in parallel with q single-
objective maximizations. The maximization of each function
is performed by running a global optimization over Ū using
Inflationary Differential Evolution (IDEA). The minimization
over D is performed by means of MACSν, a modified
version of MACS2.

IDEA [8] is a population-based memetic algorithm for
single-objective optimization. It hybridizes Differential Evo-
lution and Monotonic Basin Hopping paradigms in order to
simultaneously improve local convergence and avoid stagna-
tion, as demonstrated for some space trajectory optimization
problems.

MACS2 [9] is a memetic algorithm for multi-objective
optimization based on a combination of Pareto ranking and
Tchebycheff scalarization. The search for non-dominated
solutions is performed by a population of agents which
combine individualistic and social actions. The initial pop-
ulation is randomly generated in the search domain D.
Individualistic actions perform a sampling of the search space
in a neighborhood Nρ of each agent. Then, subsets of the
population perform social actions aiming at following partic-
ular descent directions in the criteria space. Social agents im-
plement a Differential Evolution operator and assess the new
candidate solutions using Tchebycheff scalarization. Current
non-dominated solutions are then stored in an archive. Both
social and individualistic actions make use of a combination
of the population and the archive.

MACSν is the min-max variant of MACS2. Indeed, in a
classical minimization problem two solutions d1 and d2 are
ranked according to which one gives the lower value of the
function. In the minimization loop of a min-max problem, the
same can be done only if the maximization loop has returned
the actual global maxima ũ1 and ũ2. However, this is usually
not true. Therefore a mechanism of cross-check such that
also (d1,u2) and (d2,u1) are evaluated is needed in order
to increase the probability that each maximization identifies
the global maximum and correctly rank two solutions. For
this reason, MACSν (see Algorithm 1) endows MACS2
with special heuristics. More in detail, Algorithm 2 is used
to discriminate and archive the solutions that are Pareto



dominant. A cross check is necessary to compare the values
of the objective functions for a newly generated design vector
against the function values of an already archived solution.
Consider, in fact, that a different design vector corresponds
in general to a different landscape of the objective functions,
and therefore to a different location of the maxima. More-
over, the cross-check performs a local search or a simple
function evaluation in the inner maximization loop depending
on whether the location of the maxima changes or not,
respectively, for different design vectors.

At the end of this cross-check, Algorithm 3 is run to
select the design vectors to attribute to the next generation,
once a new candidate population is generated after either
individualistic or social moves. The following heuristics are
implemented: if d (resp. u) is unchanged, the old u (resp. d)
is replaced with the new one, if it yields a better value of
the objective function; if both d and u are different, the new
vectors will replace the old ones.

A validation (see Algorithm 4) is run at the last iteration of
MACSν, after the individualistic and social moves have been
performed. It performs a global search for the extremes in the
archive, and replaces the corresponding uncertain vector and
objective if the new ones give a better value of the objective
function, until there is no more variation in the extremes of
the archive. This step is introduced to mitigate the possibility
that the cross-check operators assign the same incorrect u to
all d vectors in the population and archive.

A. Optimization Performance Metrics

In order to assess the Pareto front f found by MACSν with
respect to a reference front g, we made use of convergence
Mconv (Equation 6), and spreading Mspr (Equation 7),
defined as:

Mconv =
1

Np

Np∑
i=1

min
j∈Mp

100

∥∥∥∥gj − figj

∥∥∥∥ (6)

Mspr =
1

Mp

Mp∑
i=1

min
j∈Np

100

∥∥∥∥fj − gigi

∥∥∥∥ (7)

where Np and Mp are the cardinality of the fronts f and g,
respectively. As one can see, the lower the value of Mconv

and Mspr, the better convergence and spreading, respectively.
In addition, two performance indexes pconv = P (Mconv <
tconv) and pspr = P (Mspr < tspr) compute the success
rate with respect to some thresholds tconv and tspr. These
indexes tell how many times, over a certain number of
runs, convergence and spreading are equal to or below such
thresholds.

IV. SURROGATE MODELLING

The solution of the min-max problem involves an increase
in the number of times the objective function needs to
be evaluated. In this context, the use of surrogate models
can play a valuable role. The surrogates are constructed
using data drawn from high-fidelity models, and provide fast
approximations of the objectives at new design points. In this

Algorithm 1 MACSν
1: Initialize population P , archive A = P , nfeval = 0,
ε = 0.7, δ = 10−6

2: while nfeval < nfeval,max
3: Run individualistic moves and generate trial popula-

tion Pt
4: for all d ∈ Pt
5: for all darch ∈ A
6: if d � darch
7: CROSS-CHECK(Pt, A) . Alg. 2
8: end if
9: end for

10: end for
11: MIN-MAX SELECTION(P, Pt) . Alg. 3
12: Update P and A
13: Z ← ‖Fmaxarch − Fminarch‖
14: Run social moves and generate candidate population

Ps
15: for all d ∈ Ps
16: for all darch ∈ A
17: if d � darch or ‖F(d)− F(darch)‖ > εZ
18: CROSS-CHECK(Ps, A) . Alg. 2
19: end if
20: end for
21: end for
22: MIN-MAX SELECTION(P, Ps) . Alg. 3
23: Update P and A
24: VALIDATION(A) . Alg. 4
25: for all d ∈ P
26: for all darch ∈ A
27: if d � darch or d ≺ darch
28: CROSS-CHECK(P,A) . Alg. 2
29: else if ‖F(d)− F(darch)‖ < δ
30: Replace u ∈ P with u ∈ A
31: end if
32: end for
33: end for
34: Fit surrogate model in D with the elements of A
35: end while

paper we propose an approach in which a surrogate is built
in the D space only, as shown in Figure 1(a). The surrogate
in the design space has d as design sites, and g as response,
and is therefore constructed and updated in the outer loop of
the optimization, i.e. the minimization over D.

The approach can be formalized as follows. Let us con-
sider, without loss of generality, Problem 4 in the single-
objective case:

νmax = min
d∈D

max
u∈Ū

f(d,u) (8)

This can also be written as

νmax = min
d∈D

g(d,u) (9)

where
g(d,u) = max

u∈Ū
f(d,u) (10)



Algorithm 2 Cross-check
1: function CROSS-CHECK(P,A)
2: for all l ∈ {1, . . . , q}
3: if ‖ularch − ul‖ 6= 0
4: Compute local maxima ũlarch and ũl associ-

ated to d and darch
5: if f l(darch, ũl) ≥ f l(darch,ularch)
6: replace ularch with ũl

7: end if
8: if f l(d, ũlarch) ≥ f l(d,ul)
9: replace ul with ũlarch

10: end if
11: end if
12: end for
13: return P,A
14: end function

Algorithm 3 Min-Max Selection
1: function MIN-MAX SELECTION(P, Pnew)
2: for all l ∈ {1, . . . , q}
3: for all (d ∈ P )

⋃
(dnew ∈ Pnew)

4: if ‖dnew − d‖ = 0
5: if f lnew(dnew,ulnew) ≥ f l(d,ul)
6: replace ul with ulnew
7: replace fl with f lnew
8: end if
9: else if ‖dnew − d‖ > 0

10: if f lnew(dnew,ulnew) < f l(d,ul)
11: replace d with dnew
12: replace fl with f lnew
13: end if
14: end if
15: end for
16: end for
17: return P
18: end function

i.e. it is the result of the inner loop of the optimization.
The aim of this approach is to separate the outer and inner

loops. The idea behind this is that the inner loop can be
called only if the surrogate (d, g) needs to be updated. If the
accuracy of the surrogate (d, g) is above a certain threshold,
only the outer loop is run, hence saving computational
expense. In addition, such approach allows the surrogate
model to be dependent only on the relevant parameters, i.e.
the design vector d for the outer loop (Figure 1(b)).

The surrogate model is built by using the archived solu-
tions of the minimization loop as design sites (see Algorithm
1). The surrogate is therefore built and updated only if there
are new elements in the archive. Note that a strategy that
would build the surrogate progressively as new agents are
deployed into the minimization loop, therefore using all
the design solutions is not applicable because the design
solutions need to be cross-checked. Without these steps, the
surrogate would contain design solutions that, while being

Algorithm 4 Validation
1: function VALIDATION(A)
2: for all l ∈ {1, . . . , q}
3: ∆fbest = 1
4: while ∆fbest 6= 0
5: j = argmin f l ∈ A
6: Run global optimization over Ū and compute

new f̄ l and associated ūl
7: if f̄ l > f l

8: replace ul ∈ A with ūl
9: replace f l ∈ A with f̄ l

10: ∆fbest = f̄ l − f l
11: end if
12: end while
13: end for
14: return A
15: end function

 

 

 

 
 

 

 

 

 

 

 

f

g1

u1 Ū

g

g1 (u1)

Ddoptd1

νmax

 

(a)

SURR. D 

MAX U 

e > tol 

e < tol 

d 
fsurr, Ø  f, u  

f  

(b)

Fig. 1
(A) CONCEPTUAL EXAMPLE OF THE SURROGATE MODELLING

STRATEGY. THE PLOT REPRESENTS THE SURROGATE IN THE D SPACE.
THE DOTS ARE THE DESIGN SITES. NOTICE THAT g1 = max

u
f(d1, u).

(B) SCHEMATIC OF THE SURROGATE MODELLING STRATEGY.

non-dominated, do not maximize the inner loop. A further
feature of our technique is that the number of design sites
is kept below a user-specified threshold of ns points. Once
the number of sample points overcomes such threshold, the
sites to be retained are chosen so that the spreading of the
Pareto front is maximized, and the members of the archive
evenly distributed. By noting that the design sites are, as
explained in the previous paragraph, the current archive of
Pareto set and front, therefore one can define a sector in
the criteria space defined by the origin and the extrema of
the front. Then, such sector is divided into ns − 1 smaller
sectors of equal angle, and the design sites to be retained
are the ns ones which distance to the boundaries between
the sectors is minimum. This allows for the surrogate to
approximate accurately the current Pareto front, and also to
keep the surrogate to a reasonable size.

A. Kriging Predictor

Starting from a set of sample points, or design sites, the
Kriging predictor is an interpolation technique that makes



use of a regression function and a correlation model to
predict the response of a function at a desired point. Being
an interpolation method, it gives an exact prediction of the
response at the sample points. Moreover, it assumes that
the output function values are correlated in design space,
i.e. closer points are more highly correlated. A complete
derivation of the Kriging model can be found in Jones [10].
If we suppose to have a set of n design sites (x, y), the
correlation matrix R of the design points can be expressed
as

R = [Rij ] = exp

[
−

d∑
l=1

θl‖xil − xjl‖pl
]

(11)

where i, j = 1, . . . , n. In the same way, the correlation of
the new point x∗ at which we want to predict the response
ŷ(x∗), with the design points can be expressed as

r = [ri] = exp

[
−

d∑
l=1

θl‖x∗l − xil‖pl
]

(12)

The correlation model depends on two parameters θ and p.
They can be found to be the ones that minimize the mean
squared error between the predicted response ŷ and the actual
response y. Therefore an optimization is to be performed
during the training phase. Under the assumption that the
regression function is a zero-th order polynomial, i.e. it is
a n× 1 vector of ones 1, the prediction ŷ(x∗) can be found
to be

ŷ(x∗) = µ̂+ rTR−1(y− 1µ̂) (13)

where

µ̂ =
1TR−1y
1TR−11

(14)

One of the key benefits of Kriging is the provision of
an estimated error of its predictions. The estimated mean
squared error (MSE) for a Kriging model is

s2(x∗) = σ̂2

[
1− rTR−1r +

(1− rTR−1r)2

1TR−11

]
(15)

where

σ̂2 =
(y− 1µ̂)TR−1(y− 1µ̂)

n
(16)

is the estimated variance.
The availability of an estimate of the prediction error is a

very convenient feature, as it can be exploited in the surrogate
update strategy. Letting ymin be the current best function
value, and Y (x) a random variable normally distributed,
with mean ŷ(x) and standard deviation s(x), describing the
uncertainty about the function’s value, an improvement I
is achieved if I(x) = ymin − ŷ(x) > 0. In this paper we
consider a method based on the probability of improvement,
that is deemed to be one of the best two-stage methods to
the Kriging update [10] [11]. The main advantage of this
method is that the probability of improvement is independent
of magnitude and units of the function value.

The probability of an improvement is the area of the PDF,
with mean ŷ(x) and standard deviation s(x), calculated from
ymin to −∞. That is

P (I(x)) = Φ (u(x)) (17)

where Φ is the normal cumulative distribution function, and

u(x) =
ymin − ŷ(x)

s(x)
=
I(x)

s(x)
(18)

One can set a threshold τ on this probability of improvement,
and update the Kriging predictor if P (I) ≥ τ . The advantage
of such method is that the threshold τ is a simple non-
dimensional probability measure, therefore independent of
the magnitude and units of the function value.

The probability of improvement can be extended to the
case of multiple objectives. In this case, an improvement
is achieved when the new point dominates at least one
member of the archived non-dominated points. Considering
two uncorrelated objectives, the improvement I(x) is then
defined as y1P − ŷ1(x) > 0 ∪ y2P − ŷ2(x) > 0, where
y1P and y2P represent the members of the archived Pareto
front. If the Pareto front is composed of NP members, by
defining

ui1(x) =
yi1P − ŷ1(x)

s1(x)
, ui2(x) =

yi2P − ŷ2(x)

s2(x)
(19)

for i = 1, ..., NP , the probability of improvement is

P (I(x)) = Φ
(
u1

1(x)
)
+

NP−1∑
i=1

[
Φ
(
ui+1

1 (x)
)
− Φ

(
ui1(x)

)]
× Φ

(
ui+1

2 (x)
)

+
[
1− Φ

(
uNP

1 (x)
)]

Φ
(
uNP

2 (x)
)

(20)

This expression can be obtained by integrating the Gaussian
distribution underlying the improvement I for the two ob-
jective functions between −∞ and the Pareto front [12].

V. TEST CASE

The surrogate-based optimization algorithm described in
the previous sections was tested on six bi-objective test
cases. The chosen functions, reported in Table I, have the
property of being easily scalable. More in detail, functions
MV9, MV10, and EM1 present very challenging landscapes,
with multiple maxima that can change significantly with the
design vector. Function MV10, in particular, is characterized
by having the maxima located on top of multiple sharp, steep
peaks. The six test cases are composed of the functions in
Table I as reported in Table II. The dimension of the design
vector d, as well as the uncertain vector u, is 8, for a total of
16 dimensions, for test cases TC1, TC2, and TC3. Test cases
TC4, TC5, and TC6 are more challenging, as they have more
maxima and TC4 and TC6 also have disconnected fronts.
For these reasons, they have design and uncertain vectors
of dimension 4, for a total of 8 dimensions. A sensitivity
analysis was conducted in order to assess how the several
parameters of the solver affect its performance. In particular,
coupled analysis for number of function evaluations of inner



TABLE I
TEST FUNCTIONS.

Function Parameters

MV1 f =
∑n
i=1 diu

2
i

d ∈ [1, 5]n

u ∈ [−5, 3]n

MV2 f =
∑n
i=1 (di − ui)

2 d ∈ [1, 5]n

u ∈ [−5, 3]n

MV3 f =
∑n
i=1 (5− di) (1 + cosu1)+ d ∈ [1, 5]n

+(di − 1) (1 + sinui) u ∈ [−5, 3]n

MV8 f =
∑n
i=1 (2π − ui) cos (ui − di)

d ∈ [0, 3]n

u ∈ [0, 2π]n

MV9 f =
∑n
i=1 (di − ui) cos (−5ui + 3di)

d ∈ [1, 3]n

u ∈ [−π
2
, 3π

2
]n

MV10 f =
∑n
i=1 (di + ui)× d ∈ [−4, 2π]n

cos (−ui(5|d|+ 5) + 3di) u ∈ [π, 2π]n

EM1 f =
∑n
i=1 (ui − 3di) sinui + (di − 2)2

d ∈ [0, 2π]n

u ∈ [0, 20]n

vs. outer loops, total number of agents and number of social
agents for MACSν, and F vs. CR for IDEA. Note that,
as shown in [9], F and CR of MACSν do not have a
big impact. The sensitivity analysis was run for test case
TC4. The results were assessed in terms of success rate of
finding the global maximum in the inner loop, indicated
as s.r.(fi), as well as convergence and spreading as per
Equations 6 and 7. Results in Tables III - V show that the best
success rate, convergence, and spreading are obtained for 20
agents for MACSν, half of which perform the social actions,
and F = 1, CR = 0.1 and 200n function evaluations for
IDEA. The Kriging predictor makes use of a zero-th order
polynomial regression function and a Gaussian correlation
function. The number of design sites is kept below 20. Three
thresholds for the surrogate update have been tested, and
they were set to 0.3, 0.5 and 0.9, i.e. 30%, 50% and 90%
probability of improvement. The reference solution, i.e. the
real front in Figures 2 - 4, was computed by merging the
results of 200 runs of the same problem without using the
surrogate model and with a number of function evaluations of
106. Tables VI to VIII summarize the performance metrics of
the surrogate-based optimization for the six test cases at the
several thresholds for the surrogate update. The results are
the average performances obtained from the 200 runs needed
to achieve a confidence interval of 95% on the success rate
being within a ±5% interval containing its estimated value
[8]. The column Inner/Outer contains the percentage of times
that the inner loop was called. The columns Mconv and
Mspr contain the mean value and, in brackets, the standard
deviation of Mconv and Mspr respectively. The columns
pconv and pspr contain the success rate of computing a front
which convergence and spreading are below the thresholds
tconv and tspr, that for this paper were set equal to 5 and
10, respectively.

From Tables VI to VIII it can be seen that the inner
loop is called progressively less times as the surrogate
update threshold increases, as expected. However, there is
a variability among the test cases for the same thresholds.
This is due to the fact that certain functions are more or
less complicated to approximate by the surrogate model.
Note also that there is little difference in the percentage of

TABLE II
TEST CASES.

Test Case Function n
TC1 f1 = MV1, f2 = MV3 8
TC2 f1 = MV2, f2 = MV8 8
TC3 f1 = MV2, f2 = EM1 8
TC4 f1 = MV8, f2 = MV9 4
TC5 f1 = MV8, f2 = EM1 4
TC6 f1 = MV10, f2 = MV9 4

TABLE III
SENSITIVITY OF THE ALGORITHM TO THE NUMBER OF AGENTS

s.r.(f1, f2) Total agents
(Mconv ,Mspr) 5 10 20

So
ci

al
/to

ta
l 1/3 (100, 46.1) (100, 42.5) (100, 46.9)

(4.5, 6.8) (3.9, 5.9) (2.6, 4.8)

1/2 (100, 44.1) (100, 41.4) (100, 46.3)
(4.6, 6.7) (3.9, 6.1) (2.7, 5.0)

1 (100, 38.8) (100, 40.2) (100, 50.7)
(5.1, 7.9) (3.9, 6.1) (2.5, 4.7)

calls to the inner loop when the surrogate update threshold
passes from 50% to 90%. This is an indication that the
surrogate is able to approximate well the functions, and
therefore there are only few points where the probability
of improving the surrogate is above 0.9. By and large, the
surrogate-based MACSν produces good results for all the
test cases when the surrogate update threshold is 30%, with
a computational saving of about 10%. Increasing the update
threshold obviously causes the computational saving to be
higher, as high as 50% for some cases, because less points are
found that have 50% probability of improving the surrogate.
This also causes a decrease of the quality of the results in
terms of both convergence and spreading. Nevertheless, the
solution found is good for four of the six test cases. When
the surrogate update threshold is pushed as high as 90%,
performances, as well as computational saving, only slightly

TABLE IV
SENSITIVITY OF THE ALGORITHM TO F AND CR IN THE INNER LOOP

s.r.(f1, f2) F
(Mconv ,Mspr) 0.1 0.5 1 2

C
R

0.1 (99.9, 31.2) (100, 41.4) (100, 46.6) (99.9, 37.8)
(5.5, 7.0) (3.9, 6.1) (3.1, 5.3) (4.5, 6.4)

0.5 (100, 27.3) (100, 31.9) (100, 36.2) (100, 30.5)
(6.4, 8.1) (5.6, 7.3) (4.2, 6.3) (5.4, 6.9)

0.9 (100, 23.8) (100, 23.6) (100, 27.8) (100, 22.7)
(8.5, 9.5) (7.6, 8.4) (6.2, 7.6) (8.3, 9.0)

TABLE V
SENSITIVITY OF THE ALGORITHM TO THE NUMBER OF FUNCTION

EVALUATIONS

s.r.(f1, f2) Outer loop
(Mconv ,Mspr) 1e5 2e5 3e5 4e5

In
ne

r
lo

op

50n (100, 19.5) (100, 23.1) (100, 23.9) (100, 25.2)
(6.7, 9.4) (6.9, 8.7) (7.7, 9.1) (6.7, 7.8)

100n (100, 33.3) (100, 35.3) (100, 35.7) (100, 41.4)
(3.5, 7.0) (3.9, 6.5) (4.0, 6.3) (3.9, 6.1)

100n (100, 50.6) (100, 54.1) (100, 59.9) (100, 60.0)
(2.3, 6.2) (2.5, 5.4) (2.4, 5.2) (2.6, 5.2)



TABLE VI
PERFORMANCE METRICS FOR SURROGATE UPDATE THRESHOLD OF 30%.

Test Case Inner/Outer Mconv Mspr pconv pspr
TC1 99.1% 1.4(0.8) 9.9(5.4) 100% 60%
TC2 92.4% 0.8(0.1) 3.9(1.5) 100% 100%
TC3 87.9% 0.7(0.3) 3.6(1.9) 100% 100%
TC4 89.2% 2.4(1.5) 4.1(1.2) 96% 100%
TC5 92.6% 2.6(2.4) 1.9(1.1) 90% 100%
TC6 87.0% 3.8(0.8) 11.0(4.9) 95% 51%

TABLE VII
PERFORMANCE METRICS FOR SURROGATE UPDATE THRESHOLD OF 50%.

Test Case Inner/Outer Mconv Mspr pconv pspr
TC1 77.6% 2.4(1.2) 16.4(8.9) 98% 26%
TC2 86.6% 0.8(0.1) 5.0(1.9) 100% 98%
TC3 52.1% 3.9(1.6) 12.4(4.4) 77% 30%
TC4 49.6% 3.5(7.3) 6.5(4.3) 86% 87%
TC5 57.4% 12.9(63.1) 8.6(10.1) 44% 75%
TC6 46.1% 5.1(5.0) 25.0(13.7) 72% 12%

TABLE VIII
PERFORMANCE METRICS FOR SURROGATE UPDATE THRESHOLD OF 90%.

Test Case Inner/Outer Mconv Mspr pconv pspr
TC1 75.5% 2.3(1.3) 16.7(7.7) 97% 21%
TC2 86.4% 0.8(0.1) 5.6(2.2) 100% 94%
TC3 51.1% 4.1(1.5) 12.6(4.5) 72% 30%
TC4 46.3% 2.1(1.8) 6.3(3.4) 95% 87%
TC5 53.4% 6.0(3.2) 8.4(6.5) 41% 74%
TC6 41.3% 4.9(2.0) 27.8(11.1) 62% 2%

decrease with respect to the 50% threshold.
The Pareto fronts for the six test cases are shown in Figures

2 to 4 for the three surrogate update threshold of 30%, 50%
and 90%. It can be seen that, as mentioned, the surrogate-
based optimization algorithm is able to correctly identify
the Pareto front for test cases TC2, TC3, TC5, and TC6.
Test case TC4 presents a disconnected front, and while the
region in the objective space where the real front lies could be
identified, the surrogate-based algorithm could not identify
the disconnected portions of the front. Test case TC1 proved
to be more challenging to solve. Note that some points in
the fronts seem to dominate the real solutions. Such points
derive from an imperfect approximation by the surrogate.

VI. CONCLUSION

An algorithm for surrogate-based multi-objective worst-
case optimization has been presented. The algorithm, called
MACSν, has the peculiarity of performing a number of
checks and cross checks to increase the probability to find
the global optimum. In this paper, the optimization algo-
rithm is coupled with surrogate modelling. The aim is to
create a surrogate model that approximates the mapping
between design parameters and function values, so that the
expensive inner loop of the min-max algorithm is called
only a fraction of the times. The algorithm was tested
on six challenging bi-objective test cases made of scalable
test functions, presenting multiple maxima and some of
them disconnected fronts. An analysis of sensitivity of the
parameters of the algorithm was carried out, showing how

several combinations of total vs. social agents, F vs. CR, and
number of function evaluations affected the performance of
the algorithm. Moreover, three surrogate update thresholds
were testes. The results were good for four out of six test
cases, with a good approximation of the real Pareto front
obtained with a computational cost of 50% of the exact one.
In the case of disconnected fronts, the computed front lays on
the real one, though the disconnected portions of the front
where not identified. However, this study is limited to the
use of the probability of improvement as surrogate update
strategy. Other techniques, such as the expected improve-
ment, were proposed in the framework of surrogate-based
optimization, and their use in conjunction with MACSν is
under investigation. A real case application of MACSν is
the maximization of Belief function, which finds importance
in engineering robust design, for example, as it gives the
value of the design budgets for which the design is certainly
feasible under uncertainty.
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