Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Strategies and networks for state-dependent quantum cloning

Chefles, Anthony and Barnett, Stephen M. (1999) Strategies and networks for state-dependent quantum cloning. Physical Review A, 60 (1). pp. 136-144. ISSN 1094-1622

Full text not available in this repository. (Request a copy from the Strathclyde author)


State-dependent cloning machines that have so far been considered either deterministically copy a set of states approximately or probablistically copy them exactly. In considering the case of two equiprobable pure states, we derive the maximum global fidelity of N approximate clones given M initial exact copies, where N>M. We also consider strategies that interpolate between approximate and exact cloning. A tight inequality is obtained that expresses a trade-off between the global fidelity and success probability. This inequality is found to tend, in the limit N → ∞, to a known inequality that expresses the trade-off between error and inconclusive result probabilities for state-discrimination measurements. Quantum-computational networks are also constructed for the kinds of cloning machine we describe. For this purpose, we introduce two gates: the distinguishability transfer and state separation gates. Their key properties are described and we show how they may be decomposed into basic operations.