Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

An investigative study into the sensitivity of different partial discharge φ-q-n pattern resolution sizes on statistical neural network pattern classification

Mas'ud, Abdullahi Abubakar and Stewart, Brian G. and McMeekin, Scott G (2016) An investigative study into the sensitivity of different partial discharge φ-q-n pattern resolution sizes on statistical neural network pattern classification. Measurement, 92. pp. 497-507. ISSN 0263-2241

[img]
Preview
Text (Mas'ud-etal-MJIMC-2016-An-investigative-study-into-the-sensitivity-of-different-partial)
Mas_ud_etal_MJIMC_2016_An_investigative_study_into_the_sensitivity_of_different_partial.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

This paper investigates the sensitivity of statistical fingerprints to different phase resolution (PR) and amplitude bins (AB) sizes of partial discharge (PD) φ-q-n (phase-amplitude-number) patterns. In particular, this paper compares the capability of the ensemble neural network (ENN) and the single neural network (SNN) in recognizing and distinguishing different resolution sizes of φ-q-n discharge patterns. The training fingerprints for both the SNN and ENN comprise statistical fingerprints from different φ-q-n measurements. The result shows that there exists statistical distinction for different PR and AB sizes on some of the statistical fingerprints. Additionally, the ENN and SNN outputs change depending on training and testing with different PR and AB sizes. Furthermore, the ENN appears to be more sensitive in recognizing and discriminating the resolution changes when compared with the SNN. Finally, the results are assessed for practical implementation in the power industry and benefits to practitioners in the field are highlighted.