Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Radiative recombination data for modeling dynamic finite-density plasmas

Badnell, N.R. (2006) Radiative recombination data for modeling dynamic finite-density plasmas. Astrophysical Journal, 167 (2). pp. 334-342. ISSN 0004-637X

[img]
Preview
Text (strathprints005835)
strathprints005835.pdf - Accepted Author Manuscript

Download (197kB) | Preview

Abstract

We have calculated partial final-state resolved radiative recombination (RR) rate coefficients from the initial ground and metastable levels of all elements up to and including Zn, plus Kr, Mo, and Xe, for all isoelectronic sequences up to Na-like forming Mg-like. The data are archived according to the Atomic Data and Analysis Structure (ADAS) data class adf48, which spans a temperature range of z2(101-107) K, where z is the initial ion charge. Fits to total rate coefficients have been determined, for both the ground and metastable levels, and those for the ground are presented here. Comparison is made both with previous RR rate coefficients and with (background) R-matrix photoionization cross sections. This RR database complements a dielectronic recombination (DR) database already produced, and both are being used to produce updated ionization balances for both (electron) collisionally ionized and photoionized plasmas.