Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A joint OFDM PAPR reduction and data decoding scheme with no SI estimation

Adegbite, Saheed A. and McMeekin, Scott G. and Stewart, Brian G. (2016) A joint OFDM PAPR reduction and data decoding scheme with no SI estimation. EURASIP Journal on Wireless Communications and Networking, 2016 (1). ISSN 1687-1472

[img]
Preview
Text (Adegbite-etal-JWCN2016-joint-OFDM-PAPR-reduction-and-data-decoding-scheme)
Adegbite_etal_JWCN2016_joint_OFDM_PAPR_reduction_and_data_decoding_scheme.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

The need for side information (SI) estimation poses a major challenge when selected mapping (SLM) is implemented to reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Recent studies on pilot-assisted SI estimation procedures suggest that it is possible to determine the SI without the need for SI transmission. However, SI estimation adds to computational complexity and implementation challenges of practical SLM-OFDM receivers. To address these technical issues, this paper presents the use of a pilot-assisted cluster-based phase modulation and demodulation procedure called embedded coded modulation (ECM). The ECM technique uses a slightly modified SLM approach to reduce PAPR and to enable data recovery with no SI transmission and no SI estimation. In the presence of some non-linear amplifier distortion, it is shown that the ECM method achieves similar data decoding performance as conventional SLM-OFDM receiver that assumed a perfectly known SI and when the SI is estimated using a frequency-domain correlation approach. However, when the number of OFDM subcarriers is small and due to the clustering in ECM, the modified SLM produces a smaller PAPR reduction gain compared with conventional SLM.