Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Rapid development of software defined radio : FMCW radar on Zynq SDR

Barlee, Kenneth and Stewart, Robert and Crockett, Louise (2016) Rapid development of software defined radio : FMCW radar on Zynq SDR. In: University of Strathclyde Faculty Research Presentation Day, 2016-06-22 - 2016-06-22, University of Strathclyde.

[img]
Preview
Text (Barlee-Stewart-Crockett-2016-rapid-development-of-software-defined-radio)
Barlee_Stewart_Crockett_2016_rapid_development_of_software_defined_radio.pdf - Final Published Version

Download (4MB) | Preview

Abstract

FMCW Radar is a relatively simple radar technology. Here, an FMCW chirp is transmitted, bounces off a surface and reflects back to the receive antenna. The received signal is out of phase with the transmitted signal, due to the additional propagation time. The time difference between the Transmit (Tx) and Receive (Rx) chirps is directly proportional to the distance travelled (distance-speed-time), and by calculating what the time difference is, the propagation distance can be estimated. A standard use case for FMCW radar is Adaptive Cruise Control. The Coffee Can Radar project was originally developed by academics at MIT [1]. As part of a radar course, it aims to have students build FMCW radars from $100 worth of analogue components that are capable of estimating range. These radars do not work in real time, as the received signals need to be processed offline in MATLAB. Using this as a starting point, work was carried out to develop a similar system that could operate in real time using only SDR equipment. A Zynq ZC706 development board was chosen for this task, along with an FMCOMMs 3 radio front end.