Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Rapid development of software defined radio : FMCW radar on Zynq SDR

Barlee, Kenneth and Stewart, Robert and Crockett, Louise (2016) Rapid development of software defined radio : FMCW radar on Zynq SDR. In: University of Strathclyde Faculty Research Presentation Day, 2016-06-22 - 2016-06-22, University of Strathclyde.

Text (Barlee-Stewart-Crockett-2016-rapid-development-of-software-defined-radio)
Barlee_Stewart_Crockett_2016_rapid_development_of_software_defined_radio.pdf - Final Published Version

Download (4MB) | Preview


FMCW Radar is a relatively simple radar technology. Here, an FMCW chirp is transmitted, bounces off a surface and reflects back to the receive antenna. The received signal is out of phase with the transmitted signal, due to the additional propagation time. The time difference between the Transmit (Tx) and Receive (Rx) chirps is directly proportional to the distance travelled (distance-speed-time), and by calculating what the time difference is, the propagation distance can be estimated. A standard use case for FMCW radar is Adaptive Cruise Control. The Coffee Can Radar project was originally developed by academics at MIT [1]. As part of a radar course, it aims to have students build FMCW radars from $100 worth of analogue components that are capable of estimating range. These radars do not work in real time, as the received signals need to be processed offline in MATLAB. Using this as a starting point, work was carried out to develop a similar system that could operate in real time using only SDR equipment. A Zynq ZC706 development board was chosen for this task, along with an FMCOMMs 3 radio front end.