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Art authentication is a complicated process that often requires the extensive study of high value objects. Although a series of non-
destructive techniques is already available for art scientists, new techniques, extending current possibilities, are still required. In this 
paper, the use of a novel mid-infrared tunable imager is proposed as an active hyperspectral imaging system for art work analysis. 
The system provides access to a range of wavelengths in the electromagnetic spectrum (2500–3750 nm) which are otherwise difficult 
to access using conventional hyperspectral imaging (HSI) equipment. The use of such a tool could be beneficial if applied to the paint 
classification problem and could help analysts map the diversity of pigments within a given painting. The performance of this tool is 
demonstrated and compared with a conventional, off-the-shelf HSI system operating in the near infrared spectral region (900–1700 nm). 
Various challenges associated with laser-based imaging are demonstrated and solutions to these challenges as well as the results 
of applying classification algorithms to datasets captured using both HSI systems are presented. While the conventional HSI system 
provides data in which more pigments can be accurately classified, the result of applying the proposed laser-based imaging system 
demonstrates the validity of this technique for application in art authentication tasks.

Keywords: hyperspectral imaging (HSI), infrared, laser imaging, optical parametric oscillator (OPO), art work authentication, classification, 
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Introduction
The art market is a highly sophisticated one where the value of 
a particular piece is often predetermined by its authorship and, 
critically, its authenticity. Unfortunately, with a high demand 
for various art works, the market is often supplied with coun-
terfeit creations. As a result, authentication of the art work, 
particularly for high value pieces, is an important aspect of 
this market. Common practice in the art world is connoisseur-
ship—an evaluation of the piece based on non-scientific exper-
tise. However, when this process is not supported by scien-
tific tests, it often provides limited proof of the assessment. 
Various scientific methods may be applied to art analysis and 
authentication and these, in parallel with the knowledge of art 
historians and connoisseurs, have the potential to empower 
the evaluation with substantial evidence about the authenticity 

of the piece.1 Many of the scientific techniques which can be 
employed require the removal of small samples of material 
from the painting, which is highly undesirable, especially for 
assessing high value objects. Therefore, there is a clear need 
for new, non-destructive scientific practices that can support 
the analysis and evaluation of art work in an efficient and 
effective way. Several techniques, such as X-ray fluorescence 
and Fourier transform infrared (FT-IR) or Raman spectros-
copy,2,3 are already available and used by art historians. In this 
paper, hyperspectral imaging (HSI) systems operating in the 
infrared (IR) spectral region are presented as an additional 
non-destructive testing technique that can be used to support 
art authentication studies. To this end, the performance of 
an active, laser-based, mid-infrared (mid-IR)  hyperspectral 
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2 Infrared Hyperspectral Imaging as an Aid for Paint Identification

imager is compared with a passive near infrared (NIR) hyper-
spectral camera (see below for more details on both systems) 
when applied to the challenge of pigment and paint classifica-
tion.

HSI is already recognised as a valuable technique in the 
art world and it has been successfully used for mapping of 
different paints in the art work,4,5 material identification6–9 and 
analysis of the artists’ techniques.10,11 Recently, an applica-
tion of mid-IR imaging device for art work analysis was also 
demonstrated.12 In this work, studies were conducted using a 
subset of the mid-IR spectral region which was demonstrated 
to provide meaningful information for art scientists.

The mid-IR imager used in this work was originally devel-
oped as a device for stand-off detection of gases and explosive 
materials, where only the presence or absence of a compound 
would be judged based on the detected reflected energy at a 
specific wavelength. This paper demonstrates a novel appli-
cation of this system, where a full hyperspectral data set is 
acquired and chemometric algorithms are applied for its 
analysis. Techniques for accurate image acquisition and the 
subsequent application of chemometrics to extract useful 
information are the main focus of this study. The results of the 
classification techniques used provide a quantitative overview 
of the performance of both systems operating individually and 
give an indication of the pigment recognition accuracy that 
could be achieved.

Materials and methods
Hyperspectral equipment
The HSI system under evaluation in this study is a Firefly IR 
Imager (M Squared Lasers). This is an active, laser-based 
system, providing scanned point-by-point illumination to the 
object (in this case paintings) under study. The device oper-
ates mainly in the mid-IR region (2500–3750 nm), however, 
it can also acquire images from a narrow band of the NIR 
spectral range (1490–1850  nm). Firefly’s vertically polar-
ised laser source operates in a pulsed regime with 150 kHz 
repetition rate, <10 ns pulse duration and average powers of 
Pav_NIR = 140 ± 30 mW and Pav_midIR = 90 ± 40 mW in the NIR 
and mid-IR, respectively. It should be noted that both average 
powers quoted are variable as a function of wavelength. The 
image acquisition process is based on single point detection 
of reflected laser energy. The nominal laser beam radius at 
the output port is 2 mm (1/e2 intensity) with 1.5 mrad half 
angle beam divergence. A spatial scan is made possible by 
two, galvanometer-mounted, gold mirrors which deflect the 
illuminating laser beam and direct the collected, reflected 
energy back to the single-element IR photovoltaic detector. 
Firefly is able to capture images up to maximum pixel count 
of 51 × 512 pixels (that may have various spatial resolutions, 
depending on the beam deflection settings as well as the 
distance between the imager and the object) and three lower 
options are available: 64 × 64, 128 × 128 and 256 × 256 pixels. 
However, due to the sinusoidal movement pattern of the 

vertical galvanometer, nearly 12% at the bottom and at the top 
of the image are spatially distorted. As a result, in our work, 
these regions of each image are cropped before data analysis. 
A hyperspectral image can be captured by performing the 
sequential collection of spatial images across the spectral 
range that is accessible by the device.

Access to the mid-IR is granted by the fact that the Firefly IR 
Imager uses intracavity optical parametric oscillator (ICOPO) 
technology, which transforms the radiation of a 1064 nm pump 
laser into two beams at longer wavelengths, corresponding 
to the aforementioned spectral range of this system.13 When 
the pump photon passes the non-linear crystal (fan grated, 
periodically poled lithium niobate, PPLN), where the para-
metric process takes place, its energy is converted into two 
lower energy photons called signal and idler. The summed 
energy of the signal and idler photons is equal to the energy 
of the pump photon. The split of the energy between signal 
and idler depends on the position of the crystal relative to 
the pump laser and therefore its translation across the pump 
beam allows spectral tuning of the imager. While the tech-
nology is highly innovative, the requirement for a physical 
translation of the crystal accompanied by the time required for 
image collection at each wavelength makes the acquisition of 
a hyperspectral cube time consuming. In fact, the total acqui-
sition time is determined by the required spectral and spatial 
resolution of the hyperspectral data cube to be acquired. Since 
the down-converted spectral region is continuous across the 
entire accessible bandwidth, the spectral resolution of the 
hyperspectral data cube is determined by the step size of the 
crystal translation. As a result, the spectral tuning may be as 
fine as 0.1 nm. However, due to the finite linewidth of the illu-
minating laser (~5 cm–1), in this work the hyperspectral data 
cubes (hypercubes) were acquired with a spectral resolution of 
6 nm. It should be noted that the option for the spectral tuning 
of this imager gives it the ability to perform as a hyperspec-
tral, multispectral or single band imager depending on user 
requirements.

In the sections below, the performance of the Firefly IR 
imager is compared with that of a Red Eye 1.7 (Inno-spec 
GmbH) passive hyperspectral camera. This system employs 
the widely used pushbroom data acquisition method14 that is 
common with this kind of hardware. The Red Eye 1.7 system 
uses a transparent grating which provides 256 spectral image 
bands across the NIR operating range (900–1700 nm). As a 
passive system, the Red Eye 1.7 requires external illumination 
and off-the-shelf halogen lamps were used during imaging, to 
ensure a sufficient amount of infrared illumination.

Data acquisition
Image acquisition with the Red Eye 1.7 passive imaging system 
was performed following a procedure that is typical for such 
systems and provided high quality data. A Zolix KSA 11-200S4N 
linear translation stage was used to provide relative movement 
between scanned pieces and the detector. This is required by 
pushbroom imaging systems which capture images in a line 
scan fashion. By providing sufficient and even illumination 
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from halogen lamps and the scanning mechanism, the hyper-
spectral data cubes were acquired for a number of different 
paintings. Before acquiring the data, reflectance calibration 
of the system was performed using separate white and dark 
references. A Spectralon15 tile was used as a white calibration 
target and a dark reference was obtained by obscuring the 
camera objective with an opaque black cap. As the data acqui-
sition software provided with the Red Eye 1.7 camera incorpo-
rates the traditional calibration procedure, the captured data 
was saved directly in the reflectance format and no further 
calibration or correction was required. Figure 1(a) illustrates 
the set-up of the full scanning system which incorporates the 
Red Eye 1.7 camera.

Although simpler in principle, imaging with the laser-based 
Firefly IR device proved to be a more complicated process. As a 
result, the initial captured data demonstrated several features, 
inherent to the underlying physics driving this imager, which 
make direct application of chemometrics difficult. The main 
obstacle is that the spatial intensity distribution across the 
image is not uniform. Unfortunately, due to the deflection of 
the illuminating beam, the collection efficiency of the reflected 
energy varies with respect to the angle of incidence of the 
beam on the object. This phenomenon results in a varying 
reflectance response of objects which are spectrally identical 
and should therefore produce the same spectrum regardless 
of spatial location. Figure 2 illustrates a single band image 
(at 3200 nm) of a test paint grid (see the Building the spectral 
library section), where the whole spatial area was captured 
with one scan. The background across the image is covered 
with one paint and, in the absence of the aforementioned 
issue, should have the same intensity across the whole image. 
To enhance visibility of this phenomenon with the naked eye, 
during acquisition of the image presented in Figure 2, the gain 
of the detector preamplifier was reduced, resulting in higher 

contrast between the areas of varying intensity. The imaging 
set-up and laser scanning incidence angles were analysed 
further to provide us with a better understanding of this 
problem. Figure 3 provides a schematic diagram of the imager 
position shown with respect to the image plane. The sche-
matic illustrates the approximate laser beam incidence angles 
during the scanning process. This image also demonstrates 
the off-normal incidence of the illumination beam on the 
object placed parallel to the housing of the imager. For rough-
ened surfaces, diffuse reflections are best observed when the 
scanning beam is at a near-normal angle of incidence with 
respect to the object. According to the bidirectional reflec-
tance distribution, with an increasing angle of incidence, the 
main intensity of the reflected radiation will be directed away 

Figure 1. Illustration of the scanning set-up for Red Eye 1.7 camera (a) and Firefly IR Imager (b).

(b)

Figure 2. Single band image (at 3200 nm) of the test paint grid 
illustrating spatial intensity variation of collected reflected 
illumination.

(a)
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from the detector.16 This phenomenon accurately describes 
the observed behaviour of the Firefly IR Imager.

Due to the off-normal incidence of the laser beam when 
imaging the painting placed parallel to the front of the 
Imager housing, it was decided to image the painting at 
three different orientations, as illustrated in Figure 4. This 
allowed us to experiment with and verify the impact that the 
incidence angles of the scanning beam have on the intensity 
of the reflected radiation that is collected. The test paint grid 
was first placed parallel to the imager housing, then +45° 
and finally at –45° from the normal parallel position. Since it 
was also observed that the intensity variation is stronger in 
the longer wavelength range, this test was performed in the 
NIR operating band of the system where this phenomenon 
is weaker. Any undesired artefacts observed in images at 
these wavelengths are expected to be amplified in the mid-IR 
range.

The results shown in Figure 4 confirm the expected behav-
iour and are consistent with the bidirectional reflectance 
distribution studies—increasing the angle of incidence results 
in a reduction in the amount of radiation that is reflected back 
to the detector.

Since the Firefly is effectively a closed, COTS system, there 
are a limited number of options available to address this issue. 
The first approach that was considered aimed to provide a 
uniform reference target (similar to the white tile approach) 
that could be imaged periodically and used for normalisa-
tion and correction of all images captured using the same 
set-up. However, during trials it was discovered that spatial 
uniformity in the image data is highly dependent on the 
imaging wavelength as well as the type and surface roughness 
of the material(s) which make up the object being imaged. 

This initial approach was therefore unsuccessful, since the 
data could not be corrected using a single reference target. 
Following a number of unsuccessful trials using various mate-
rials specially machined for consistency and dimensioned to 
be larger than the paintings under study, this approach was 
abandoned.

Eventually, the most appropriate solution involved scan-
ning each painting in small individual spatial segments of 
50 × 75 mm (the size of these segments was derived empiri-
cally) to produce multiple small images which were subse-
quently stitched together to produce a full-size image for 
each wavelength. This procedure limited the deflection of 
the scanning beam and thus improved the spatial intensity 
distribution across the scanned area. The result of this data 
acquisition method is illustrated in Figure 5(c). The scanning 
system including the Firefly IR Imager and the painting placed 
on a linear x–y translation stage, which allowed accurate and 
repeatable image portioning into the small blocks described, 
is illustrated in Figure 1(b).

Other artefacts in the data captured using the Firefly IR 
imaging system were caused by specular reflections from the 
paints and due to the three-dimensional nature of the surface 
of the paintings. Any curvature on the paint surface resulted 
in reflections of the incident beam in various directions—thus 
causing significant variations in the reflected energy detected 
by the imager. Similarly, in some places, specular reflections 
occurred and the energy was reflected directly back to the 
detector leading to saturation. This too had significant impact 
on the measured spectrum of the affected paints. Having no 
control over the structure of the paintings, it was decided 
to include all these artefacts into the same class of specific 
paint when applying statistical classification techniques to 

Figure 3. Simplified diagram of the minimum and maximum beam positions at one horizontal plane during the image scan.
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 automatically recognise paints based on their spectral signa-
tures. Last but not least, the image quality acquired by the 
Firefly IR Imager is affected by the speckle issue (caused by 
the coherence of the illumination radiation); however, no miti-
gation techniques for the speckle phenomenon were applied 
during this work.

Spectral pre-processing
Data from the passive system was acquired as calibrated 
reflectance values. However, due to technicalities of the hard-
ware structure, it was impossible to calibrate data from the 
Firefly IR Imager in a similar manner. Therefore, before any 
further processing, the 8-bit data of hyperspectral data cubes 
acquired using the Firefly IR system were rescaled to the 
range [0–1] by dividing each intensity by the maximum value 
(255).

Building the spectral library
The main goal of this work was to verify the use and application 
of the aforementioned hyperspectral imagers to the challenge 
of paint classification. The first step was therefore to create 
a spectral library of paints which were subsequently used 
as training data for the proposed automated classification 
process. A grid canvas with a selection of 41 paint samples was 
prepared [see Figures 5(a) and 5(b)] based on paints purchased 
from a number of specialist artists’ colourmen. Suppliers 
were selected with particular reference to those offering high 
quality ranges that include ostensibly “historically appropriate” 
materials (Michael Harding; Rublev; Blockx). The grid canvas 
was imaged using both HSI systems [see single band intensity 
images in Figures 5(c) and 5(d)] and, for each paint, a spectral 
signature was extracted from the hyperspectral data cube 
and used to train a classifier. Averaged spectral profiles of 

Figure 4. Results of the test for the impact of painting position on the intensity variation across the image.
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three different paints selected for the purposes of example are 
shown in Figure 6. It should be noted that the spectral signa-
tures of paints in the NIR-calibrated dataset obtained using 
the Red Eye 1.7 have been compared with and were shown to 
be similar to the corresponding spectra available in the data-
base of pigment spectra.17

Classification
A dual-stage classification approach was proposed to auto-
matically detect paints in the hyperspectral data cubes. For 

each classification problem, a subset of three paints was first 
selected manually based on the colour information in order 
to limit the training set to the compact set of likely candidate 
paints. Then, a detail, pixel-by-pixel, spectral classification 
was performed using the hyperspectral data captured for 
these candidate paints from both imaging systems. Although 
the first stage in this classification approach could be easily 
automated based on RGB information or visible range 
hyperspectral data, it was performed manually in this work 
to quickly test the feasibility of the proposed hyperspectral 

Figure 5. Illustration of the grid canvas used as training data, imaged with a RGB camera (a), description of the pigments used in the 
grid canvas (b), Firefly IR imager—single band at 3200 nm (c) and Red Eye 1.7—single band at 1200 nm (d).

(a)

(c)

(b)

(d)
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image analysis approach. A support vector machine (SVM) was 
chosen for this second stage classification. SVM is a robust 
machine learning algorithm which is widely used and consist-
ently provides good classification accuracy.18,19 The algorithm 
used is based on the LIBSVM20 package and the multiclass 
problem was carried out using a “one-against-one” approach.

Results
In addition to the grid canvas used for training purposes, we 
also realised a bespoke painting which was a pastiche of a 
Suprematist work by Kazimir Malevich that was generated 
with a subset of paints available in the training set shown in 
Figure 2(a). This painting was also imaged with both avail-

able systems using the exact same approach as outlined 
in the Materials and methods section. To avoid redundant 
processing, a set of masks were used to select regions of 
interest in the image. This had the added advantage of limiting 
each classification run to only homogeneous areas in the 
painting which had been created using a paint of the same 
colour. Classification was applied to all masked regions in 
turn before a majority voting scheme was executed to allocate 
each region to a single class corresponding to the paint used 
there. Figure 7 illustrates one example of all the steps from 
this process.

Repeating the classification process for the whole painting 
allowed a map of the results to be generated for both HSI data 
sets, and these are shown next to the ground truth image in 
Figure 8. The regions labeled as misclassified come from the 

Figure 6. Single band intensity image (at 1300 nm) illustrating data extraction for three example paints (a) and their corresponding 
spectra acquired by passive (b) and active (c) systems.

(a)

(b)

(c)
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Figure 7. Illustration of the analysis approach for pigment classification on the tested painting. For each colour on the painting, a 
subset of training paints was chosen and classification was performed on the masked area of the painting corresponding to this colour. 
Classification resulted in per-pixel classification of the selected area and majority vote was drawn for these regions resulting in selec-
tion of a single pigment corresponding to one colour (demonstration based on Firefly IR Imager data).

Figure 8. Graphical illustration of the bespoke painting ground truth with colour coding of paints (a) and classification results for Firefly 
IR Imager (b) and Red Eye 1.7 Imager (c).

(a)

(b) (c)
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classification result where majority vote resulted in assigning 
a class different than the one from ground truth.

The automated analysis and classification of the dataset 
captured using the Firefly IR Imager resulted in the correct 
classification of 67% of pigments (six out of nine) that were 
present in the painting. The data set captured using the Red 
Eye 1.7 imager resulted in 78% (seven out of nine) of the paints 
being correctly identified.

For each pixel in the masked, analysed region of the image, 
a unique class label was assigned from the subset of three 
candidate paints. The percentage of correctly classified pixels 
varied significantly between different regions in spite of the 
fact that each region was known to have been painted using 
a unique paint from the library. The misclassification problem 
was most likely due to the spectral similarity of the candi-
date paints or as a result of the imaging artefacts discussed 
in the Data acquisition section. Figure 9 shows the receiver 
operating characteristic (ROC) curves for both HSI sensors. 
The ROC curves were generated by applying the classifier 
to the data from both HSI systems and performing a binary 
comparison with the output and a set of manually generated 
ground truth data. It is clear that the performance of the clas-
sification using the data from the passive system is better than 
the active one. This reduced accuracy in the active system can 
be explained by the presence of the aforementioned imaging 
artefacts (as discussed in the Data acquisition section) which 
are present in the data set.

Conclusions
This study has demonstrated the application of chemometric 
techniques to identify pigments and paints in hyperspectral 
images of a bespoke painting. It is shown that infrared hyper-
spectral imaging is a powerful, non-destructive tool able to 
support the art authentication process. Furthermore, such a 
system could be used for pigment classification and hence 
automatic mapping of paints within a painting to help guide 

the sampling process while potentially helping to reduce the 
amount of pigment sampling required.

The data in this work was acquired using a state-of-the-art, 
laser-based hyperspectral imager and the results of analysing 
these images have been compared to those obtained when 
analysing data captured using a conventional hyperspectral 
camera. It is shown that there are various challenges associ-
ated with capturing wide-area hyperspectral images using 
active laser-based imaging systems such as the Firefly IR. 
These occur as a result of non-uniform back-scatter reflec-
tance and specular reflections which affect the nature of the 
spectral signatures observed. To address these challenges, 
we have demonstrated a workable solution and have shown 
that it is possible to successfully apply signal processing algo-
rithms to the resulting data set to achieve accurate classifica-
tion in most cases.

The comparison of the classification results from both 
systems was in favour of the conventional hyperspectral 
camera; however, the score was very close between both 
systems. Although the Firefly IR Imager is a very powerful 
tool and enables stand-off detection in the mid-IR region, the 
image quality and time of hyperspectral data acquisition would 
have to be improved to compete with conventional designs of 
hyperspectral cameras. On the other hand, the spectral region 
covered by this system is rarely available in other systems. 
Therefore, when the spectral signature is required in this 
bandwidth, e.g. for the detection of hydrocarbons or other 
substances with strong spectral features in this region, the 
Firefly IR Imager is able to collect a valid hyperspectral data 
set where other conventional HSI systems cannot.
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