Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Weak completeness of coalgebraic dynamic logics

Hansen, Helle Hvid and Kupke, Clemens (2015) Weak completeness of coalgebraic dynamic logics. In: Proceedings Tenth International Workshop on Fixed Points in Computer Science. Electronic Proceedings in Theoretical Computer Science, Berlin, pp. 90-104.

Text (Hansen-Kupke-FICS-2015-Weak-completeness-of-coalgebraic-dynamic)
Hansen_Kupke_FICS_2015_Weak_completeness_of_coalgebraic_dynamic.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (175kB) | Preview


We present a coalgebraic generalisation of Fischer and Ladner's Propositional Dynamic Logic (PDL) and Parikh's Game Logic (GL). In earlier work, we proved a generic strong completeness result for coalgebraic dynamic logics without iteration. The coalgebraic semantics of such programs is given by a monad T, and modalities are interpreted via a predicate lifting \^I whose transpose is a monad morphism from T to the neighbourhood monad. In this paper, we show that if the monad T carries a complete semilattice structure, then we can define an iteration construct, and suitable notions of diamond-likeness and box-likeness of predicate-liftings which allows for the definition of an axiomatisation parametric in T, \^I and a chosen set of pointwise program operations. As our main result, we show that if the pointwise operations are "negation-free" and Kleisli composition left-distributes over the induced join on Kleisli arrows, then this axiomatisation is weakly complete with respect to the class of standard models. As special instances, we recover the weak completeness of PDL and of dual-free Game Logic. As a modest new result we obtain completeness for dual-free GL extended with intersection (demonic choice) of games.