Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Solar sail dynamics in the three-body problem: homoclinic paths of points and orbits

Waters, Thomas J. and McInnes, Colin R. (2008) Solar sail dynamics in the three-body problem: homoclinic paths of points and orbits. International Journal of Non-Linear Mechanics, 43 (6). pp. 490-496. ISSN 0020-7462

[img]
Preview
Text (strathprints005809)
strathprints005809.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

In this paper we consider the orbital previous termdynamicsnext term of a previous termsolar sailnext term in the Earth-Sun circular restricted three-body problem. The equations of motion of the previous termsailnext term are given by a set of non-linear autonomous ordinary differential equations, which are non-conservative due to the non-central nature of the force on the previous termsail.next term We consider first the equilibria and linearisation of the system, then examine the non-linear system paying particular attention to its periodic solutions and invariant manifolds. Interestingly, we find there are equilibria admitting homoclinic paths where the stable and unstable invariant manifolds are identical. What is more, we find that periodic orbits about these equilibria also admit homoclinic paths; in fact the entire unstable invariant manifold winds off the periodic orbit, only to wind back onto it in the future. This unexpected result shows that periodic orbits may inherit the homoclinic nature of the point about which they are described.