Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Biomechanical investigation of the locust ear with 3D laser Doppler vibrometry

Klenschi, Elizabeth and Guarato, Francesco and Windmill, James and Jackson, Joseph (2015) Biomechanical investigation of the locust ear with 3D laser Doppler vibrometry. In: 15th Invertebrate Sound and Vibration (ISV2015), 2015-07-13 - 2015-07-17, Lord Elgin Hotel, Ottawa.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

One of the models of insect tympanal hearing, the desert locust Schistocerca gregaria, has already been the subject of numerous studies investigating membrane mechanics, neurophysiology, and ethology over the past few years in order to better understand insect hearing. Acquiring insight into the biomechanics of insect hearing is to study how their ears move; the impact of tympanal structure on frequency analysis in the locust has already been investigated using laser Doppler vibrometry to record membrane displacement (e.g. Windmill et al 2005). Thanks to this approach it is known that, in locusts, sounds of given frequencies will generate travelling waves across the tympanum that propagate to different locations depending on the frequency of the initial stimulus. Locust ears are characterized by several spatially segregated groups of mechanosensors which are tuned to different ranges of frequencies, from 1-12 kHz in the folded body region (FB), to 12-30 kHz around the pyriform vesicle (PV). These travelling waves thus allow for the incoming stimulus to be concentrated in the region of the tympanum best tuned to its frequency, a phenomenon which can be regarded as a first, mechanical step in the process of frequency analysis. The research addressed in this work applies recent technological advances in 3D micro-scanning laser Doppler vibrometry to measure membrane displacement. Thus, in addition to the travelling waves identified through vibration measurements in only one dimension by previous studies, this work has for the first time detected and identified membrane oscillations in three dimensions simultaneously. The results allow us to improve our understanding of the impact of membrane mechanics on frequency analysis in the locust ear.