Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

High speed differential protection system for aircraft dc distribution systems incorporating solid state circuit breaking capability

Fletcher, Steven and Fong, Chung Man and Norman, Patrick and Galloway, Stuart and Burt, Graeme (2015) High speed differential protection system for aircraft dc distribution systems incorporating solid state circuit breaking capability. In: SAE 2015 AeroTech Congress & Exhibition, 2015-09-22 - 2015-09-24.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The increasing adoption of the more-electric aircraft concept has seen a growth in the proposed use of power electronic systems and DC power distribution in order to attain numerous benefits. These include higher end-to-end power transfer efficiency, reduced power system weight through increased power density, and greater system flexibility and reconfigurability. However, there can also be significant safety challenges arising from an unconventional system fault response, which places challenging operating requirements on any protection systems employed. This paper presents a high speed current differential implementation approach for dc distribution systems capable of sub-millisecond fault detection. The approach utilizes the natural characteristics of dc differential current measurements to significantly reduce fault detection times compared to standard applications and hence meet requirements for dc converter protection. The paper first presents a review of potential protection issues associated with converter interfaced dc networks on aircraft which may necessitate accelerated protection operation. Options for implementing the proposed technique are then illustrated. Results of scaled hardware testing are presented which validate the overall protection operating times in a low voltage environment. These results show the implementation approach can consistently achieve protection system operation within the order of a few microseconds.