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Abstract—Traditional imaging algorithms within the ultra-
sonic NDE community typically assume that the material being
inspected is homogeneous. Obviously, when the medium is of
a heterogeneous or anisotropic nature this assumption can
contribute to the poor detection, sizing and characterisation of
defects. Knowledge of the internal structure and properties of the
material would allow corrective measures to be taken. The work
presented here endeavours to reconstruct coarsened maps of the
locally anisotropic grain structure of industrially representative
samples from ultrasonic phased array data. This is achieved via
application of the reversible-jump Markov Chain Monte Carlo
(rj-MCMC) method: an ensemble approach within a Bayesian
framework. The resulting maps are used in conjunction with
the total focussing method and the reconstructed flaws are used
as a quantitative measure of the success of this methodology.
Using full matrix capture data arising from a finite element
simulation of a phased array inspection of an austenitic weld,
a 71% improvement in flaw location and an 11dB improvement
in SNR is achieved using no a priori knowledge of the material’s
internal structure.

I. INTRODUCTION

Ultrasonic non-destructive evaluation relies on the transmis-
sion and reception of mechanical waves to image the interior of
solid objects without compromising their structural integrity.
It is particularly important for the testing of key components
within safety critical industries such as nuclear, oil and gas,
power, and aerospace, where failure to detect structural weak-
nesses is potentially catastrophic. Ultrasonic phased arrays
(which are capable of simultaneously transmitting and receiv-
ing ultrasound signals across multiple piezoelectric elements)
provide the possibility of performing fast inspections with
ultrasonic beams at various angles and focal lengths, giving
rise to a richer set of data. The N2 A-scans arising from
each transmit/receive pair of elements can be stored in a 3D
matrix usually termed the Full Matrix Capture (FMC) [1] (with
dimensions N ×N × T , where T is determined by the length
of the A-scan). These FMC datasets can be processed to create
images of the internal structure of the object, thus highlighting
any flaws. However, traditional imaging algorithms can strug-

gle to accurately reconstruct defects within the component
when the material exhibits inhomogeneous and/or anisotropic
behaviour. Due to the spatial variation of material properties,
the ultrasonic wave paths are distorted and their expected
arrival times, on which classical imaging algorithms are based,
are no longer accurate.

One example of this behaviour occurs in austenitic welds
where, due to the heating process during their formation,
a polycrystalline structure develops and large misorientated
grains cause waves to scatter and bend. When traditional
imaging algorithms (which assume a homogeneous medium
with constant wave speed [1]) are applied to these datasets,
flaws are typically mislocated and poorly characterised. To
overcome this issue, knowledge of the material map can be
used in conjunction with imaging algorithms to correct for
deviations in the velocity of the wave as it travels through
the sample [2]. There exist several strategies for obtaining
these maps. Very accurate, high resolution reconstructions of
the material microstructure can be extracted via experimental
means such as electron backscatter diffraction (EBSD) [3] and
spatially resolved acoustic spectroscopy (SRAS) [4]. However,
these techniques require cross sections of the material to be
sliced and polished and thus contradict the basic principles
of NDE. Another means to obtaining a material map is via
forward modelling. MINA (Modeling of anIsotropy based on
Notebook of Arcwelding) uses information from the welding
procedure to predict the final geometry of the weld structure
[5]. However, it is obviously restricted to the mapping of welds
and requires a priori knowledge of the welding process which
may not always be available when examining historic welds.

Reconstruction of the material geometry can alternatively
be approached as an inverse problem, where properties of
the material can be inferred from its ultrasonic phased array
inspection. In [6], [7], the thickness of plate-like structures
is mapped using guided wave tomography. A tomographic
approach to reconstructing the internal crystalline structure of
a weld has previously been employed in [2], where an initial



estimate of the weld microstructure was taken from a model
and the ultrasonic wave propagation through the weld was
simulated using Dijkstra’s shortest path algorithm. The weld
parameters were then varied and the error between the experi-
mental data and modelled data was minimised. Once the error
converged, a weld map was generated and used in conjunction
with the total focussing method (TFM) [1] to produce more
accurate images of a flaw. In this paper, a similar approach
is taken but with some key differences. Here, the reversible
jump Markov Chain Monte Carlo (rj-MCMC) method [8], an
ensemble inference approach within a Bayesian framework, is
used. One benefit of the rj-MCMC is that it treats the model
dimension as an unknown: the method is transdimensional.
Thus, instead of being restricted to a high dimensional rigid
square mesh as used in [2], the parametrisation of the internal
geometry is adaptive and will naturally adapt to the lowest
dimensional space suitable to best model the distinct regions
present in the sample under inspection. However, as we study
moments of the ensemble solution (specifically the mean of
the posterior distribution of solutions to our inverse problem)
this discrete partitioning is replaced by a continuous map of
the spatial domain, thus removing any limits on its resolution.
Additionally, no assumptions are required on the internal
structure of the sample under inspection; the initial model
arbitrarily assigns a constant dominant orientation to the entire
domain. The only prior information required is that which can
be measured directly: the sample’s dimensions, the location
of the transmitting and receiving elements and the material’s
slowness curve (derived from the known elastic constants).
The method has already been used successfully within the
seismology community to chart the velocity field of the Earth’s
surface [9], [10]. In this work, as we are primarily concerned
with polycrystalline structures where the material properties
are constant but the wave speed is dependent on the wave
direction and grain orientations, a single map of the velocity
field cannot represent the complexity of the material. Instead,
a map of regions with dominant orientations is reconstructed,
mirroring the polycrystalline properties of the sample. This
map is then used in conjunction with the TFM to correct
for discrepancies in the expected arrival times caused by the
anisotropic nature of the material.

II. METHOD

A. Material Parametrisation

To minimise the degrees of freedom within the inversion,
it is assumed that regions of contiguous crystallites with
similar orientations can be grouped together and assigned an
average orientation, producing a coarsened representation of
the material microstructure. These regions will be referred to
as grains throughout this paper and will be represented by
cells in the geometrical parametrisation of the microstructure.
As the polycrystalline materials in which we are primarily
interested in have an irregular geometry, Voronoi diagrams
will be used to describe them mathematically [11], [12]. This
partitioning is dictated by a discrete set of seeds (xi, yi) for
i = 1, ..., n, where n is the number of regions, creating 2n

degrees of freedom. To parameterise the polycrystalline mate-
rial, a third parameter is assigned to each cell: its orientation
ϕi. This orientation dictates the speed at which a wave passes
through that grain and allows the effects of anisotropy to be
studied. Thus we have a parametrisation with 3M unknowns
(where M , the number of cells, is itself an unknown), and N2

equations, describing the known time of arrival between every
transmit/receive pair of elements.

B. The Reversible-Jump Markov Chain Monte Carlo Algo-
rithm

The reversible-jump Markov Chain Monte Carlo (rj-
MCMC) method produces a posterior distribution for trans-
dimensional spaces. It is an ensemble approach based in a
Bayesian framework and thus requires that all information
is written in terms of probabilities. The posterior probability
density function is given by Bayes’ rule

p(m|dobs) ∝ p(dobs|m)p(m) (1)

where p(m) is the a priori probability density function of the
model m and p(dobs|m) is the likelihood that the observed
data dobs arises from that model. The distance between the
observed data and the model is measured using the least
squares misfit function

misfit =
∥∥∥∥f(m)− f(dobs)

σd

∥∥∥∥2 (2)

where σ2
d is the variance of the data noise [13] and the

function f represents the estimated first time of arrivals for
each transmit/receive pair of array elements from the dataset
on which it is acting. This is equivalent to maximising the
probability for a Gaussian likelihood function and so

p(dobs|m) ∝ exp

(
−misfit

2

)
. (3)

A priori information is included via the p(m) term and is
kept to a minimum by drawing the model parameters from
uninformative uniform distributions, and only using informa-
tion which is directly measurable: the exterior dimensions of
the imaging domain and the locations of the transmitters and
receivers.

To generate a reliable estimate of the posterior distribution,
the model must be evaluated iteratively throughout the model
space. An initial parametrisation of the material microstructure
m is constructed using a Voronoi diagram. An arbitrary num-
ber of cells is taken and they are all assigned the same value
of ϕi. A straight ray between each pair of transmit/receive
elements is modelled (to minimise the computational expense,
the effects of raybending are ignored in this paper). Slowness
curves [14] are used to dictate the velocity at which the
ray travels. This is dependent on the direction of the wave
θ and the angle ϕi of each region the ray passes through.
Coupled with the known distances through each distinct cell
lying between the transmit and receive elements, a first time of
arrival for each pair is predicted to obtain the Time-of-Flight
matrix (ToF). The distance between the modelled ToF matrix



and observed ToF matrix is then calculated using equation
(2) and the posterior p(m|dobs) for the initial model is thus
evaluated. The geometry is then perturbed to create a new
model m′. This can be done in one of five ways: cell birth,
cell death, cell move, cell orientation change or system noise
change [13]. Once a perturbation has been made, the posterior
p(m′|dobs) is calculated. The perturbation is then accepted or
rejected subject to the Metropolis-Hastings criteria

p(accept) = min

(
1,

p(m′|dobs)

p(m|dobs)

)
. (4)

Once accepted, the model m′ replaces the model m and the
process begins again. If m′ is rejected, the model is discarded
and the original model m is perturbed again.

C. Sampling the Posterior Distribution

The above process is repeated iteratively and, due to the
nature of the Markov chain and its memoryless property
[15], each perturbation is independent of all previous model
perturbations. After the burn in period, the Markov chain
should converge and exhibit stationarity: this is the posterior
distribution of solutions to the inverse problem. By excluding
the burn in period, any bias towards the initial model is
discounted. The chain is then sampled at an interval of r,
where r is the number of steps required before we can expect
to obtain a model that is considered independent of the last.
In deterministic optimisation schemes, the model with the
smallest misfit (the global minimum) would typically be taken
as the solution. However, within the Bayesian framework, we
are encouraged to consider the posterior distribution as a whole
and so instead of considering a single model, various moments
of the distribution are analysed. To produce the mean image
of the material map we project the sampled partition models
into the spatial domain and average. Given the large number
of samples, when the Voronoi tessellations are stacked, the
partitions overlap and the resulting spatial regional orientation
map is effectively a continuous function of the plane. This
framework allows the study of the variance over the domain
which can be exploited for uncertainty quantification studies
and probability of detection work.

D. The Observed Data

For this paper, to minimise the uncertainty in the extraction
of the first time of arrival data, a through-transmission set
up has been selected for the simulated inspection, where the
transmitting and receiving arrays are placed directly opposite
each other on each side of the sample. Thus, the time of
flight matrix can be constructed by taking the first point in
time at which the amplitude of the signal reaches a pre-
determined threshold (chosen as 1.5µV here) for each pair
of transmit/receive elements.

E. Simulation

1) Synthetic Geometry: A simplified model was examined
first to allow visual analysis of the algorithm’s success. A
finite element simulation of a through-transmission phased

array inspection of a sample constructed from four distinct
grains (as shown in Figure 1a) was run (recall that regions of
contiguous crystallites with similar orientations are grouped
together and assigned an average orientation and referred to as
grains). Each grain was assigned the same material properties
but the upper right and bottom left grains (in yellow) were
assigned a 20◦ orientation and the remaining two grains were
assigned a 0◦ orientation. The rj-MCMC algorithm was run
for 50,000 samples and assumed to be stationary after around
1000 samples. These first 1000 samples were discarded (the
burn in period) and the remaining models were sampled at
an interval of 100; it is these sampled models from which
our statistics are drawn. Figure 1b depicts an arbitrary sample
drawn from the posterior distribution and a resemblance to the
known geometry is indeed apparent. The distance between the
two can be quantified in terms of the total error difference
between the image matrices averaged over the number of
pixels. This measure gives an average error of 4.3◦ per pixel
between the sample shown in Figure 1b and the known
geometry. This compares favourably to the difference between
the initial map (where each cell was assigned an orientation
of 10◦) and the known geometry, where the error present
at each pixel was 10◦. Figure 1c depicts the mean of the
posterior distribution and is the map which we take to be our
solution to the inverse problem. The distance between it and
the known geometry is further improved with an average error
of 3.4◦. The standard deviation of each pixel over the posterior
distribution is plotted in Figure 1d. Note that where the mean
map in image 1c diverges from the known geometry, primarily
at the boundaries between differently orientated regions, a
higher standard deviation is exhibited, from which we can
infer that these areas are a less reliable representation of the
actual material.

2) Simulated Inspection of a Weld: To test our method
on more industrially relevant data, an ultrasonic phased array
inspection of an austenitic weld was simulated in the software
package PZFlex [16]. The weld microstructure was taken
from experimental Electron Backscatter Diffraction (EBSD)
measurements [3], [17] to allow the effects of the anisotropic
polycrystalline structure of the weld on the wave’s passage to
be studied. Two simulations were run: the first was a through-
transmission inspection of the weld material and the second
was a one sided pulse-echo inspection where a 4mm diameter
void was embedded in the centre of the weld geometry (see
[18] for an in depth description of the simulation and the
parameters used). The first time of arrivals between each
pair of elements were extracted from the dataset arising from
the through-transmission simulation in the same manner as
discussed in Section II-D, and the rj-MCMC method was then
applied. Here, the success of this map is measured via its
use in conjunction with the TFM algorithm [1] in application
to the one-sided inspection dataset which includes the void
defect. The flaw reconstruction displayed in Figure 2a arises
from application of the TFM when the material is assumed to
be isotropic and homogeneous. Application of the rj-MCMC
algorithm resulted in the reconstruction of an anisotropic map
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Fig. 1: Maps of a synthetic material with locally anisotropic regions:
(a) the known geometry of the material as simulated within the
PZFlex environment, (b) a Voronoi diagram taken from the stationary
posterior distribution, (c) the ensemble average map and (d) the map
of the standard deviation.
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Fig. 2: TFM reconstructions of a 4mm void embedded in an austenitic
weld where (a) a constant velocity assumption is made and (b) the
rj-MCMC map is used in conjunction with the TFM. The hollow disc
represents the known location and size of the defect.

of the weld which has been used to provide correction to the
TFM imaging algorithm, as shown in Figure 2b. In image 2a,
two separate high amplitude regions can be observed. Taking
the stronger reflection on the left to be the flaw we have
an SNR measurement of 15dB and an error in placement of
8.4mm. Image 2b exhibits an improved SNR of 26dB and a
defect misplacement of only 2.4mm.

III. CONCLUSION

A new method for inverting ultrasonic phased array in-
spection data to reconstruct maps of the locally anisotropic
grain structure of polycrystalline materials has been described.
The material microstructure is parameterised using Voronoi
diagrams and the final map is obtained by taking the mean of
the posterior distribution of solutions to the inverse problem
generated using the reversible-jump Markov Chain Monte
Carlo method. Application to data arising from the finite

element simulation of an ultrasonic phased array inspection
of a synthetic material and an austenitic weld demonstrated
the potential of the technique. In the case of the austenitic
weld geometry, the success of the map was measured using
the TFM reconstruction of a 4mm diameter void as a proxy.
It was shown that an 11dB improvement in SNR could be
obtained and the error in the reconstructed flaw’s location
improved by 6mm when the map of locally anisotropic regions
was accounted for.
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