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Topological fixpoint logics are a family of logics that admits topological models and where the fix-
point operators are defined with respect to the topological interpretations. Here we consider a topo-
logical fixpoint logic for relational structures based on Stone spaces, where the fixpoint operators are
interpreted via clopen sets. We develop a game-theoretic semantics for this logic. First we introduce
games characterising clopen fixpoints of monotone operators on Stone spaces. These fixpoint games
allow us to characterise the semantics for our topological fixpoint logic using a two-player graph
game. Adequacy of this game is the main result of our paper. Finally, we define bisimulations for
the topological structures under consideration and use our game semantics to prove that the truth of
a formula of our topological fixpoint logic is bisimulation-invariant.

1 Introduction

By topological fixpoint logics we mean a family of fixpoint logics that admit topological models and
where the fixpoint operator is defined with respect to topological interpretations. In the standard se-
mantics fixpoint operators are interpreted as the least (or greatest) fixpoint of a monotone map in the
powerset lattice. In our topological setting we interpret fixpoint operators as the least (or greatest) fix-
point of a monotone map on some (topological) sublattice of the powerset lattice (e.g., clopen subsets,
open or closed subsets, regular open or closed subsets etc.). An important motivation for studying such
formalisms is that every axiomatic system of the modal µ-calculus is complete with respect to the topo-
logical semantics via clopen sets [1]. Moreover, the powerful Sahlqvist completeness and correspon-
dence result from modal logic can be extended to the axiomatic systems of modal µ-calculus for this
semantics [6]. We note that completeness results for axiomatic systems of modal µ-calculus with the
standard semantics are very rare, and require highly complex machinery [14], [23], see also [18] and [9].
Note also that axiomatic systems of modal conjugated µ-calculus axiomatized by Sahlqvist formulas
are closed under Dedekind-MacNeille completions via topological semantics [5]. However, these sys-
tems are not closed under Dedekind-MacNeille completions for the standard semantics [17]. Another
motivation for studying topological semantics of fixpoint logic is that it provides an alternative view on
fixpoints operators with new notions of expressivity and definability. For a comprehensive discussion on
the importance of generalized models in logic, including modal fixpoint logic, we refer to [2]. A rather
different approach to interpret fixpoint formulas over topological spaces is taken in [11] where formulas
are interpreted in the full powerset lattice and where modalities are interpreted via topological operations
such as closure and topological derivative.

We illustrate the difference between standard and topological fixpoint operators with an example.
Consider the frame (N∪{∞},R) drawn in Figure 1. We assume that the topology on the set is such that
clopen sets are finite subsets of N and cofinite sets containing the point ∞. The denotation of the formula
3∗p is the set of points that “see points in p wrt the transitive closure of the relation R”. Therefore 3∗p
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Figure 1: Example

is equal to the set N. Indeed, N is the least fixed point of the map S 7→ {0}∪3S, where 3S = {s′ | ∃s ∈
S.(s′,s) ∈ R}. However, if we are looking for a least clopen fixpoint of this map then we see that this will
be the set N∪{∞}. Intuitively, the denotation of the formula 3∗p wrt the clopen semantics is the set of
all points that “see points in p wrt the topological transitive closure of the relation R”. Note that a similar
operation was used in [21] for characterising in dual terms subdirectly irreducible modal algebras.

In this paper, we aim to advance the study of topological fixpoint logics by developing a game
semantics for them. We will concentrate on a variant of topological fixpoint logic based on interpretations
via clopen sets. For clopen sets we consider Stone spaces with a binary relation (descriptive µ-frames in
the terminology of [1] and [6]). The advantage of clopen sets is that the denotation of modal formulas in
clopen sets is the same as in the standard Kripke semantics of modal logic. The negation of a formula
is interpreted as the complement, conjuction and disjunction as the intersection and union, respectively,
and the modal operators are also interpreted in the standard way. However, clopen sets of an arbitrary
Stone space do not form a complete lattice and therefore the fixpoint operators, in general, may not be
interpreted in Stone spaces with the clopen semantics. Therefore, we need to restrict to a class of Stone
spaces where these operators can be interpreted. We will achieve this by looking at relational structures
based on extremally disconnected spaces which is a subclass of descriptive µ-frames.

There are several motivations for developing the game semantics for the topological µ-calculus.
Firstly, the semantics of a formula can be usually much better understood when formulated in terms of
games. This is especially true for formulas with some non-trivial interplay of least and greatest fixpoint
operators. Secondly, a game semantics is crucial for the development of automata-theoretic methods of
the topological µ-calculus: the game semantics provides an “operational” semantics for the formulas
of the logic and the definition of a run of an automata (or of its acceptance game) is entirely based on
this operational view on the truth of a formula. Thirdly, the game semantics is an important tool for
developing the model-theory of the topological µ-calculus.

The main contribution of this paper is a game semantics for the topological µ-calculus based on
clopen sets. Technically, the main result is the proof of adequacy of our game semantics. Finally we are
demonstrating how the game semantics can be used in order to obtain model-theoretic results: we prove
that the topological µ-calculus is invariant under what we call clopen bisimulations.

We view the results in this paper as first steps towards a full theory of topological fixpoint logics. An
ultimate goal is to define game semantics and automata for all descriptive µ-frames (not necessarily based
on extremally disconnected spaces). This would enable us to apply the methods of games and automata
for tackling problems such as decidability and the finite model property of axiomatic systems of the
modal µ-calculus. These systems are complete for descriptive µ-frames, whereas their completeness for
the standard Kripke semantics is quite problematic.

2 Preliminaries

2.1 Two Player graph games

Two-player infinite graph games, or graph games for short, are defined as follows. For a more compre-
hensive account of these games, the reader is referred to [12].
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A graph game is played on a board B, that is, a set of positions. Each position b ∈ B belongs to one
of the two players, ∃ (Éloise) and ∀ (Abélard). Formally we write B = B∃∪B∀, and for each position b
we use P(b) to denote the player i such that b ∈ Bi. Furthermore, the board is endowed with a binary
relation E, so that each position b ∈ B comes with a set E[b] ⊆ B of successors. Note that we do not
require the games to be strictly alternating, i.e., successors of positions in B∃ or B∀ can lie again in B∃
or B∀, respectively. Formally, we say that the arena of the game consists of a directed two-sorted graph
B= (B∃,B∀,E).

A match or play of the game consists of the two players moving a pebble around the board, starting
from some initial position b0. When the pebble arrives at a position b∈B, it is player P(b)’s turn to move;
(s)he can move the pebble to a new position of their liking, but the choice is restricted to a successor of
b. Should E[b] be empty then we say that player P(b) got stuck at the position. A match or play of the
game thus constitutes a (finite or infinite) sequence of positions b0b1b2 . . . such that biEbi+1 (for each i
such that bi and bi+1 are defined). A full play is either (i) an infinite play or (ii) a finite play in which the
last player got stuck. A non-full play is called a partial play. Each full play of the game has a winner and
a loser. A finite full play is lost by the player who got stuck; the winning condition for infinite games
is usually specified using a so-called parity function. In our paper, however, we specify the winning
conditions on infinite games in more intuitive terms, stating explicitly which infinite plays will be won
by which player. Throughout the paper the reader should take it for granted that the winning conditions
involved could easily be encoded using suitable parity functions.

A strategy for player i tells a player how to play to at a given game position: this can be represented
as a partial function mapping partial plays β = b0 · · ·bn with P(bn) = i to legal next positions, that is, to
elements of E[bn], and that it is undefined if E[bn] = /0. A strategy is history free if it only depends on the
current position of the match, and not on the history of the match. A strategy is winning for player i from
position b ∈ B if it guarantees i to win any match with initial position b, no matter how the adversary
plays — note that this definition also applies to positions b for which P(b) 6= i. A position b ∈ B is called
a winning position for player i, if i has a winning strategy from position b; the set of winning positions for
i in a game G is denoted as Wini(G ). Parity games enjoy history-free determinacy, ie., at each position
of the game board one of the player has a history free winning strategy (cf. [16, 10]).

2.2 Tarski’s fixpoint game

Recall that on any complete lattice the least fixpoint µF and the greatest fixpoint νF of a monotone
function F exist and can be obtained as follows: first we define for each ordinal α ∈ ORD two sequences
{Fµ

α }α∈ORD and {Fν
α }α∈ORD by putting

Fµ

0 = ⊥, Fµ

α+1 = F(Fµ

α ) and Fµ

α =
∨

β<α Fµ

β
for α a limit ordinal.

Fν
0 = >, Fν

α+1 = F(Fν
α ) and Fν

α =
∧

β<α Fν

β
for α a limit ordinal.

The core of the game-theoretic semantics of the modal µ-calculus is based on Tarski’s game-theoretic
characterisation of fixpoints. Given a monotone function F : PX→PX , the game board of the standard
fixpoint game is defined as follows:

Position Player Moves
x ∈ X ∃ {C ⊆ X | x ∈ F(C)}

C ⊆ X ∀ C

We will use the above notation in the following to introduce graph games: the table specifies that B∃ = X ,
B∀ = PX and in the third column of the table the successors of each game board position are specified.
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The condition on infinite plays in the standard fixpoint game is that all infinite plays of the game are won
by ∀ in the least fixpoint game and by ∃ in the greatest fixpoint game.

It is a standard result in fixpoint theory (cf. e.g. [22]) that the above least and greatest fixpoint games
characterise the least and greatest fixpoint of F , respectively. For example, ∃ has a winning strategy at a
position x ∈ X in the least fixpoint game iff x is an element of µF . If x is an element of the least fixpoint,
we know that there exists an ordinal α such that x ∈ Fµ

α . In case that α is a limit ordinal this means that
x∈

∨
β<α Fµ

β
=
⋃

β<α Fµ

β
⊆F(

⋃
β<α Fµ

β
) where the inclusion is easily verifiable. This means ∃ can move

from position x to position
⋃

β<α Fµ

β
and ∀ is forced to move to some x′ ∈ Fµ

β
with β < α . Similary, if

α = β + 1, ∃ can ensure that the play reaches a position in Fµ

β
after one round. In any case, due to the

well-foundedness of the ordinals, ∃ can ensure that the play moves from x ∈ Fµ

α to some x ∈ Fµ

β
with

β < α which implies that ∃ has a strategy that forces ∀ to get stuck after a finite number of moves.

2.3 Topological preliminaries

We will work with Kripke frames that are endowed with a topology. The most important class of such
frames used in the study of modal logic is that of modal spaces (aka descriptive frames). This is due
to the Stone representation theorem for Boolean algebras and Jónsson-Tarski representation theorem for
Boolean algebras with operators. A modal space is a triple (X ,τ,R) such that X= (X ,τ) is a Stone space
and R⊆ X ×X is a binary relation that is point-closed and clopen. The latter mean that R(x) = {y ∈ X :
xRy} is a closed set for each x ∈ X and that 3U ∈ Clp(X) for each U ∈ Clp(X), where Clp(X) is the set
of all clopen subsets of X and 3U = {x ∈ X | ∃y ∈U. xRy}. Every modal algebra can be represented as
the algebra (Clp(X),3), where X is the ultrafilter space. As a result every axiomatic system of modal
logic is complete wrt modal spaces. We refer to [8] for more details on completeness of modal logics
wrt modal spaces. We also note that modal spaces can be also represented as Vietoris coalgebras on the
category of Stone spaces [15]. Throughout this paper we will tacitly assume that all topological Kripke
frames are modal spaces.

A Stone space X = (X ,τ) is called extremally disconnected if the closure of any open subset of X
is open. It is well known (see e.g., [19]) that if X is an extremally disconnected space, then Clp(X) is a
complete Boolean algebra. Moreover, for a set of clopen sets {Ui : i ∈ I} the infinite meets and joins are
computed as:

∨
{Ui : i ∈ I}= Cl(

⋃
{Ui : i ∈ I}) and

∧
{Ui : i ∈ I}= Int(

⋂
{Ui : i ∈ I}). We call a modal

space (X ,τ,R) an extremally disconnected modal space if (X ,τ) is extremally disconnected.

2.4 Modal µ-calculus on topological spaces: denotational semantics

The complete lattice structure on Clp(X) of an extremally disconnected space X = (X ,τ) enables us to
define a topological semantics of the modal µ-calculus that is based on clopen sets.
Definition 2.1. Given a countably infinite set Prop of propositional variables (p,q, p0,q1, etc), the lan-
guage Lµ of the modal µ-calculus is inductively defined as follows:

Lµ 3 ϕ ::= p, p ∈ Prop | ¬p, p ∈ Prop | ϕ ∧ϕ | ϕ ∨ϕ | ⊥ | > |3ϕ |2ϕ |
µ p.ϕ(p,q1, . . . ,qn) | ν p.ϕ(p,q1, . . . ,qn)

where in formulas of the form µ p.ϕ and ν p.ϕ we require that the variable p does not occur under a
negation1. The sets FVar(ϕ) and BVar(ϕ) of free and bound variables of a given formula ϕ ∈Lµ are
defined in a standard way.

1Formulas are always in negation normal form, ie., negations only occur in front of propositional variables.
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Definition 2.2. Given an extremally disconnected modal space (X,R) based on a space X= (X ,τ) and
a valuation V : Prop→ Clp(X) we define the semantics [[ϕ]]XV ∈ Clp(X) of a formula ϕ by induction:

[[p]]V := V (p) [[¬p]]V := X \V (p)
[[ψ1∧ψ2]]V := [[ψ1]]V ∩ [[ψ2]]V [[ψ1∨ψ2]]V := [[ψ1]]V ∪ [[ψ2]]V

[[⊥]]V := /0 [[>]]V := X
[[3ψ]]V := {x ∈ X | R(x)∩ [[ψ]]V 6= /0} [[2ψ]]V := {x ∈ X | R(x)⊆ [[ψ]]V}

[[µ p.ψ]]V := lfp(ψV
p ) [[ν p.ψ]]V := gfp(ψV

p )

where ψV
p : Clp(X) → Clp(X) is the (monotone) operator defined by ψV

p (U) := [[ψ]]V [p7→U ] for U ∈
Clp(X) and with

V [p 7→U ](q) :=
{

U if q = p
V (q) otherwise.

We call the triple M = (X,R,V ) an extremally disconnected (Kripke) model and write M[p 7→ U ] to
denote the model M= (X,R,V [p 7→U ]).

3 Games for monotone operators on topological spaces

In this section we are going to define topological analogues of the fixpoint game from page 3. We start by
looking at fixpoints of a monotone function F : Clp(X)→Clp(X) on the lattice of clopen subsets Clp(X)
of an extremally disconnected Stone space X= (X ,τ). This assumption on the topology guarantees the
existence of a least and greatest fixpoint of F and these fixpoints can be obtained using the ordinal
approximants Fµ

α and Fν
α , respectively. To understand how the fixpoint game has to be defined we need

to inspect how the ordinal approximants Fµ

α and Fν
α are computed in case α is a limit ordinal:

Fµ

α =
∨

β<α

Fµ

β
= Cl(

⋃
β<α

Fµ

β
)

Fν
α =

∧
β<α

Fν

β
= Int(

⋂
β<α

Fν

β
)

Therefore, intuitively speaking, in order to maintain the claim that a given point x is an element of
µF it suffices that ∃ provides some open set O ⊆ X such that x ∈ F(Cl(O)), so this will become easier
for ∃. Likewise, in order to prove that x ∈ νF , ∃ will now have to provide some closed set C such that
x ∈ F(Int(C)) which is potentially more difficult compared to the standard fixpoint game. Note that in
both cases Cl(O) and Int(C) are clopen as the closure of an open set and the interior of a closed set are
clopen sets in an extremally disconnected Stone space. Our observations form the basis for the following
definitions of the fixpoint games:

Definition 3.1. Let X = (X ,τ) be an extremally disconnected topological space and let F : Clp(X)→
Clp(X) be a monotone map. We define two graph games. We start with the game board of the least
fixpoint game G I

µ(F):

Position Player Moves
x ∈ X ∃ {C ⊆ X | x ∈ F(U) for all U ∈ Clp(X) with C ⊆U}

C ⊆ X ∀ C
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ie, at a position x∈ X, player ∃ has to move to some C⊆ X such that x∈ F(U) for all clopen supersets of
C and at position C ⊆ X player ∀ has to move to some x′ ∈C. Infinite plays are won by ∀. The resulting
graph game will be called the least clopen fixpoint game and will be denoted by G I

µ(F). The greatest
clopen fixpoint game G I

ν (F) is defined similarly with the major difference that an infinite play is won by
∃. Also, the game board of G I

ν (F) reflects the aforementioned way of computing meets in Clp(X):
Position Player Moves

x ∈ X ∃ {C ⊆ X | x ∈ F(U) for all U ∈ Clp(X) with Int(C)⊆U}
C ⊆ X ∀ C

With these definitions at hand it is not difficult to prove that G I
µ(F) and G I

ν (F) indeed characterise
the least and greatest clopen fixpoints of F , respectively. This is the content to the following proposition.

Proposition 3.2. Let X = (X ,τ) be an extremally disconnected space, let F : Clp(X)→ Clp(X) be a
monotone operator. Then for any x ∈ X we have

1. x ∈ µF iff x ∈Win∃(G I
µ(F))

2. x ∈ νF iff x ∈Win∃(G I
ν (F))

Proof. We only provide the proof for the greatest fixpoint game G I
ν (F) - the one for the least fixpoint

game is very similar. We need to show that Win∃(G I
ν (F)) = νF . Suppose first that x ∈ νF ∈ Clp(X).

Then ∃ has an obvious winning strategy: she is playing the set νF . All ∀ can do is choosing another
element x′ ∈ νF after which ∃ can move again to νF and so forth. Note that any such play will be infinite
and thus ∃ has a strategy to win any play starting at x, ie., x ∈Win∃(G I

ν (F)).
For the converse we show that for all ordinals α we have X \Fν

α ⊆Win∀(G I
ν (F)) by induction on α .

Case α = 0. Then the claim is obvious as X \Fν
0 = X \X = /0.

Case α = β +1. Suppose that in a play starting at position x 6∈Fν
α =F(Fν

β
) player ∃moves to some C⊆X

with x ∈ F(U) for all U ∈ Clp(X) with Int(C)⊆U . Clearly C 6⊆ Fν

β
for otherwise Int(C)⊆ Fν

β
and thus

x ∈ F(Fν

β
) = Fν

α . Hence ∀ can pick an element x′ ∈C \Fν

β
. Now by I.H. we have that x′ ∈Win∀(G I

ν (F))
and thus ∀ has a strategy to win the play from now on. This shows that ∀ has a winning strategy at
position x in Gν(F) as required.
Case α is a limit ordinal. Consider some x 6∈ Fν

α =
∧

Fν

β
and let C⊆ X be chosen by ∃ as in the previous

case. By our assumption on the topology we have
∧

Fν

β
= Int(

⋂
Fν

β
). It is not difficult to see that

C 6⊆
⋂

Fν

β
for suppose otherwise: then Int(C)⊆ Int(

⋂
Fν

β
) =

∧
Fν

β
and thus x ∈ F(

∧
Fν

β
)⊆

∧
Fν

β
which

contradicts our assumption on x. Therefore there exists a β < α such that C 6⊆ Fν

β
, ie., such that there

exists x′ ∈C with x′ 6∈Fν

β
. By the induction hypothesis we know that x′ ∈Win∀(G I

ν (F)) and from position
x′ ∀ has a strategy to win the play. Therefore ∀ has a winning strategy from position x as required.

This shows that the games G I
µ and G I

ν characterise the least and greatest clopen fixpoint of a monotone
operator. We will use these games to prove adequacy of our game semantics for the topological modal
µ-calculus: If ∃ has a winning strategy in the evaluation game for a formula of the form µ p.ϕ and
ν p.ϕ then we will construct a winning strategy for her in the corresponding fixpoint games that we just
discussed. Vice versa we would like to transform winning strategies in the fixpoint games into winning
strategies of the evaluation game for µ p.ϕ and ν p.ϕ . For this converse direction we will need second -
but equivalent - versions of the fixpoint games.

Definition 3.3. Let X be an extremely disconnected space and let F : Clp(X)→ Clp(X) be a monotone
map. As elements of Clp(X) can occur both as position of ∃ and ∀, we clearly mark the owner of such a
position using the set of markers M = {∃,∀}. We define the following two-player game G II

µ (F) by putting
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Position Player Moves
x ∈ X ∃ {(∀,U) ∈M×Clp(X) | x ∈ F(U)}

(∀,U) ∈M×Clp(X) ∀ {(∃,U ′) ∈M×Clp(X) |U ∩U ′ 6= /0}
(∃,U) ∈M×Clp(X) ∃ U

ie, at a position x ∈ X, player ∃ has to move to some clopen set U ⊆ X such that x ∈ F(U), ∀ challenges
this by playing a element U ′ ∈ Clp(X) with U ∩U ′ 6= /0 and at position (∃,U ′) ∈M×Clp(X) player ∃
has to move to some x′ ∈U ′. Again ∀ wins all infinite plays of the game. Similarly we define the game
G II

ν (F) by defining the following game board and by stipulating that ∃ wins all infinite plays:

Position Player Moves
x ∈ X ∃ {U ∈ Clp(X) | x ∈ F(U)}

U ∈ Clp(X) ∀ U

Remark 3.4. The reader familiar with fixpoint games might be surprised and slightly worried as there is
an unexpected asymmetry between the games G II

µ (F) and G II
ν (F). Both games have in fact been derived

from two completely symmetric games with the following game boards (omitting the markers in M) and
the usual winning conditions for infinite least and greatest fixpoint games:

Gµ Position Player Moves
x ∈ X ∃ {U ∈ Clp(X) | x ∈ F(U)}

U ∈ Clp(X) ∀ U
x′ ∈ X ∀ {U ′ ∈ ClpX | x′ ∈U ′}

U ′ ∈ Clp(X) ∃ U ′

Gν Position Player Moves
x ∈ X ∃ {U ∈ Clp(X) | x ∈ F(U)}

U ∈ Clp(X) ∀ U
x′ ∈ X ∃ {U ′ ∈ ClpX | x′ ∈U ′}

U ′ ∈ Clp(X) ∀ U ′

It is not difficult to see, however, that both games can be simplified to the games G II
µ (F) and G II

ν (F).

We will now show that games for µ and ν characterise the least and greatest clopen fixpoint.

Proposition 3.5. Let X be an extremally disconnected space, let F : Clp(X)→ Clp(X) be a monotone
operator. Then for any x ∈ X we have

1. x ∈ µF iff x ∈Win∃(G II
µ (F)).

2. x ∈ νF iff x ∈Win∃(G II
ν (F))

Proof. We first focus on the least fixpoint operator. Suppose that x ∈ µF for some x ∈ X . Then there
is a least ordinal α such that x ∈ Fµ

α , we call this the µ-depth of x. We will show that ∃ has a winning
strategy in G II

µ (F) at x by describing a strategy for ∃ that ensures that either ∀ gets stuck within the next
round or that the play reaches a position x′ ∈ Fµ

α ′ with α ′ < α . Both facts entail that ∃ has a strategy such
that all plays conform her strategy are finite and that ∀ is the player who will eventually get stuck.
Case α = β +1. Then x ∈ Fµ

β+1 = F(Fµ

β
) and ∃’s strategy is to move from x to (∀,Fµ

β
). Player ∀ either

gets stuck (if Fµ

β
= /0) or responds by moving to some (∃,U ′) with U ′ ∈ Clp(X) such that U ′∩Fµ

β
6= /0.

Now ∃ picks an arbitrary x′ ∈U ′∩Fµ

β
and the round finished on a position x′ ∈ Fµ

β
with strictly smaller

µ-depth as required.
Case α is a limit ordinal. Then ∃’s strategy is to move from x to (∀,

∨
β<α Fµ

β
) = (∀,Cl(

⋃
β<α Fµ

β
))

which is a legal move as x ∈
∨

β<α Fµ

β
⊆ F(

∨
β<α Fµ

β
). Unless ∀ gets stuck, he will move to some

position (∃,U ′) where U ′ ∈ Clp(X) with U ′∩
∨

β<α Fµ

β
6= /0. In other words, the clopen subset U ′ has a

non empty intersection with the closure of
⋃

β<α Fµ

β
which implies U ′∩

⋃
β<α Fµ

β
6= /0. Therefore ∃ can

pick a suitable element x′ ∈
⋃

β<α Fµ

β
such that the round finishes in a position x′ of smaller µ-depth.
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We now show that the game G ν
II (F) characterises the greatest clopen fixpoint. Suppose that x ∈ νF ∈

Clp(X). Then, as in the proof for the game G I
ν (F), ∃ has a simple winning strategy by always moving

to νF ∈ Clp(X). For the converse we show that for all ordinals α we have X \Fν
α ⊆Win∀(G II

ν (F)) by
induction on α . The cases α = 0 and α = β +1 follow easily from the inductive hypothesis. Suppose α is
a limit ordinal and consider some x 6∈ Fν

α =
∧

β<α Fν

β
and suppose that ∃moves to some U ∈Clp(X) such

that x ∈ F(U). Then it is easy to see that U 6⊆
⋂

β<α Fν

β
, for otherwise U ⊆ Int(

⋂
β<α Fν

β
) =

∧
β<α Fν

β

and hence
x ∈ F(U)⊆ F(

∧
β<α

Fν

β
)⊆

∧
β<α

Fν

β
.

Therefore ∀ can pick some x′ 6∈
⋂

β<α Fν

β
, ie., x′ 6∈ Fν

β
for some β < α . By I.H. we know that ∀ has a

winning strategy from position x′ and hence - as ∃’s move to U was arbitrary - we showed that ∀ has a
winning strategy from position x. This finishes the proof of X \Fν

α ⊆Win∀(G II
ν (F)) which is equivalent

to Fν
α ⊆ X \Win∀(G II

ν (F)) =Win∃(G II
ν (F)) for all α ∈ORD. The latter implies Win∃(G II

ν (F))⊆ νF .

We conclude our discussion of fixpoint games on extremally disconnected spaces. The reader might
wonder why we introduced two games G I

µ(F), G II
µ (F) for the least fixpoint of F and two games for the

greatest fixpoint. Do we really need both variants of the µ- and ν-games? The reason why both variants
seem necessary for proving our adequacy theorem is based on the following observation2: The games G I

µ

and G II
µ characterise both the same least fixpoints and have therefore the same winning regions within the

set of states X . It is, however, in general not possible to transform strategies of ∃ in the first variant of the
µ-game into corresponding strategies for ∃ in the second game. To see this, suppose that ∃ has a strategy
f in G I = G I

µ(F) at position x and suppose f (x) = C. We would like to equip ∃ with a corresponding
strategy g in G II = G II

µ (F) at position x such that for the next “round” xUU ′y of G II that is conform g,
there is a corresponding round xCy of G I conform f (and by re-using that argument round-by-round, one
could ensure that f is a winning strategy for ∃ in G I iff g is a winning stratgey for ∃ in G II).

To achieve this, we have to define ∃’s strategy g such that she moves from x in G II to some suitable
clopen set U . Suppose U ⊆ Cl(C). Then ∀ can respond with some U ′ ∈ Clp(X) such that U ∩U ′ 6= /0.
This implies U ′ ∩Cl(C) 6= /0 and thus - as U ′ is clopen - that U ′ ∩C 6= /0. Hence, ∃ can continue the
play by picking an element y of U ′ ∩C which overall results in the partial G II-play xUU ′y. Clearly,
the sequence xCy is also an f -conform G I-play and therefore can act as the corresponding play for the
G II-play xUU ′y. Similarly one can show that in any play where ∃ moves from position x to some U with
U 6⊆ Cl(C), ∀ can ensure that the next state y that is reached in the play will be an element of X \C and
therefore that the resulting G II-play is no longer linked to any corresponding f -conform GI-play.

Therefore we can construct a corresponding strategy for ∃ in G II iff there is a legitimate move U for ∃
at x with U ⊆ Cl(C). In general, however, there is no suitable clopen set U ⊆ Cl(C) with x ∈ F(U) - and
this property is required for a legitimate move in G II . This is demonstrated by the following example.

Example 3.6. Consider the Stone-C̆ech compactification β (N) of the natural numbers3, let C ⊆ β (N)
be the collection of non-principal ultrafilters over N and consider the (trivially monotone) operator

F = idClp(β (N)) : Clp(β (N))→ Clp(β (N)).

For any clopen U ∈ Clp(β (N)) we have U = Ŝ = {u ∈ β (N) | S ∈ u} for some suitable set S ⊆ N. With
this in mind, it is easy to see that for all clopens U we have U ⊆C implies U = /0.

2We state this observation for µ , but it equally applies to ν .
3Which is extremally disconnected, see eg [19].
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Consider now an arbitrary x ∈C. We have that x ∈ F(U) for all U ∈ Clp(βN) such that C ⊆U (in
particular, C would be a legitimate move in G I

µ(F) at x). On the other hand, for U ∈ Clp(βN) we have
that U ⊆ Cl(C) = C implies U = /0 and thus x 6∈ F(U) for all these U (which shows that there is no
suitable move for ∃ in G II

µ (F) at x that correponds to her move from x to C).

4 Game semantics for the µ-calculus on topological spaces

We are now ready to define the game characterisation of the clopen semantics of the modal µ-calculus.
Our presentation follows the presentation of the standard game semantics of the modal µ-calculus that
can be found e.g. in [22]. In the following we assume that we are dealing with “clean” formulas in Lµ :

Definition 4.1. A formula ϕ ∈Lµ is called clean if no two distinct occurrences of fixpoint operators in
ϕ bind the same propositional variable and if a variable occurs either free or bound in ϕ (but not both
bound and free). For any bound variable p ∈ Prop that occurs within a clean formula ϕ we denote by
ϕ@p = η p.ψ the unique subformula of ϕ where p is bound by the fixpoint operator η ∈ {µ,ν}.

The restriction to clean formulas is standard practice in the modal literature. It will simplify the game
definition. Furthermore it allows us to give a concise definition of when the unfolding of one fixpoint
variable depends on the unfolding of another one.

Definition 4.2. For a clean formula ϕ ∈ Lµ and bound variables x,y ∈ Prop occurring in ϕ we say
x≤ϕ y if ϕ@x is a subformula of ϕ@y.

Definition 4.3. Let ϕ ∈Lµ be a formula and let M = (X,R,V ) be an extremally disconnected Kripke
model together with valuation V : Prop→ Clp(X). The game board of the evaluation game E (ϕ,M) is
specified in the table in Figure 2.

As usually a finite full play of E (ϕ,M) is lost by the player who got stuck at the end of the play. In
order to specify the winning condition on infinite plays π we need the following notation:

Inf (π) := {p ∈ BVar(ϕ) | p occurs infinitely often in π}.

A standard argument shows that for any infinite play π of E (ϕ,M) the set Inf (π) is nonempty, finite and
upwards directed with respect to the dependency order≤ϕ . Therefore the maximal element max(Inf (π))
of Inf (π) wrt ≤ϕ is well-defined and we declare ∃ to be the winner of an infinite play π of E (ϕ,M) iff
max(Inf (π)) is a ν-variable, ie., a variable bound by a greatest fixpoint operator.

After our discussion of fixpoint games, the reader should have little problems with understanding
the intuition behind the winning condition: an infinite play during which the highest infinitely often
“unfolded” fixpoint variable is a ν-variable corresponds to an infinite play of a greatest fixpoint game.
Therefore ∃ wins such a play. Similarly all infinite plays in which the highest infinitely often unfolded
variable is a µ-variable are won by ∀. We now turn to the formulation and proof of the main theorem of
this section. First we need to introduce some terminology and an auxiliary lemma.

Definition 4.4. Consider a two-player graph game G with set of positions B. For a set Y ⊆ B we say
a G -play π is Y -full if either π is a full play or π = b0 . . .bn is a partial play with b0, . . . ,bn−1 6∈ Y and
bn ∈ Y , i.e., bn is the first position of the play occurring in Y .

Lemma 4.5. Let M= (X,R,V ) be an extremally disconnected model, let ϕ = η p.δ with η ∈ {µ,ν} be a
fixpoint formula and consider the games Gη = E (η p.δ ,M) and GU = E (δ ,M[p 7→U ]) with U ∈Clp(X).
Furthermore we let unfoldp = {(p,x′) | x′ ∈ X}.
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Position Player Possible Moves
(p,x), p ∈ FVar(ϕ) and x 6∈V (p) ∃ /0
(p,x), p ∈ FVar(ϕ) and x ∈V (p) ∀ /0

(¬p,x), p ∈ FVar(ϕ) and x 6∈V (p) ∀ /0
(¬p,x), p ∈ FVar(ϕ) and x ∈V (p) ∃ /0

(ψ1∧ψ2,x) ∀ {(ψ1,x),(ψ2,x)}
(ψ1∨ψ2,x) ∃ {(ψ1,x),(ψ2,x)}

(3ψ,x) ∃ {(ψ,x′) | Rxx′}
(2ψ,x) ∀ {(ψ,x′) | Rxx′}

(η p.ψ,x), η ∈ {µ,ν} ∃/∀ (ψ,x)
(p,x), p ∈ BVar(ϕ), ϕ@p = µ p.ψ ∀ {(p,U) |U ∈ Clp(X), x ∈U}
(p,x), p ∈ BVar(ϕ), ϕ@p = ν p.ψ ∃ {(p,U) |U ∈ Clp(X), x ∈U}
(p,U), p ∈ BVar(ϕ), ϕ@p = µ p.ψ ∃ {(ψ,x′) | x′ ∈U}
(p,U), p ∈ BVar(ϕ), ϕ@p = ν p.ψ ∀ {(ψ,x′) | x′ ∈U}

where x,x′ denote elements of X and U denotes a clopen subset of X= (X ,τ).

Figure 2: Game board of the evaluation game E (ϕ,M)

(i) Any strategy fη for ∃ in Gη at (δ ,x) corresponds to a strategy fU for ∃ in GU at (δ ,x) such that any
unfoldp-full, fη -conform Gη -play starting at (δ ,x) is an fU -conform, full GU -play.

(ii) Any strategy fU of ∃ in GU at (δ ,x) corresponds to a strategy fη for ∃ in Gη at (δ ,x) such that for
any full fU -conform GU -play starting at (δ ,x) is an fη -conform, unfoldp-full Gη -play.

Proof. The lemma follows from the fact that a sequence of the form π = (δ ,x)b1 . . .b j . . . is an unfoldp-
full Gη -play iff it is a full GU -play.

Theorem 4.6 (Adequacy). Let M = (X,R,V ) be an extremally disconnected model with valuation V :
Prop→ Clp(X). For every formula ϕ ∈Lµ and every x ∈ X the following are equivalent:

(i) x ∈ [[ϕ]]V , and

(ii) ∃ has a winning strategy at position (ϕ,x) in E (ϕ,M).

(Sketch). The proof goes by induction on ϕ . We only will sketch the induction step for the case that
ϕ = µ p.δ - the full proof of the theorem is quite lengthy and most of the details are similar to the
adequacy proof of the standard game semantics for the modal µ-calculus. We put G = E (ϕ,M) and for
any clopen subset U ∈ Clp(X) we put GU = E (δ ,M[p 7→U ]).

By the induction hypothesis on δ and because [[δ ]]V [p7→U ] = δV
p (U) we have for all U ∈ Clp(X) that

x ∈ δ
V
p (U) iff (δ ,x) ∈Win∃(GU). (1)

In order to prove the theorem for ϕ = µ p.δ it suffices to show that the following are equivalent:

x ∈ Win∃
(
G I

µ(δ
V
p )
)

(2)

x ∈ Win∃
(
G II

µ (δV
p )
)

(3)

(ϕ,x) ∈ Win∃(G ). (4)

We proved the equivalence of (2) and (3) in the previous section. To prove all of the equivalences, we will
now show that (3) implies (4) which in turn implies (2). For the implication from (3) to (4) consider some
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state x ∈Win∃(G II
µ (δV

p )), ie., ∃ has a history-free winning strategy at position x in G II
µ (δV

p )) represented
by two (possibly partial) functions

U : X → Clp(X) and N : Clp(X)→ X .

W.l.o.g. we can assume that 〈U,N〉 is winning for ∃ from all positions in Win∃(G II
µ (δV

p )) (in particular,
U and N are defined at those positions). As the strategy U is winning (and thus legitimate) at all x ∈
Win∃(G II

µ (δV
p )) we have that for all such x that U(x) is a legitimate move at x. Hence x ∈ δV

p (U(x)) and
thus, by (1), (δ ,x) ∈Win∃(GU(x)). Therefore, for each x ∈Win∃(G II

µ (δV
p )), we can assume

(a) that there is a winning strategy fU(x) for ∃ in the game GU(x) at position (δ ,x) and

(b) that (∀,U(x)) ∈Win∃(G II
µ (δV

p )).

As seen in Lemma 4.5, the winning strategy fU(x) can be (trivially) turned into a valid strategy fµ,x

for ∃ in G at (δ ,x) that can be followed until another position of the form (p,x′) is reached or until ∃
wins the game. This observation is important for defining ∃’s strategy in G starting from position (ϕ,x):

• starting from (ϕ,x), the play proceeds to (δ ,x) and after that ∃ plays conform the strategy fµ,x.

• if the fµ,x-conform play never reaches a position of the form (p,x′) then ∃ continues playing
according to fµ,x and wins: the resulting fµ,x-conform, full G -play contains a fU(x)-conform full
GU -play (by Lemma 4.5) starting at (δ ,x) which is won by ∃ as fU(x) is a winning strategy for ∃ in
GU(x) at (δ ,x).

• Suppose an fµ,x-conform play reaches a position of the form (p,x′). Until now - by Lemma 4.5 -
the play corresponds to a fU(x)-conform play of GU(x). As fU(x) is a winning strategy for ∃ in GU(x)
this entails that x′ ∈U(x). It is now ∀’s turn to move in G to some position (p,U ′) with x′ ∈U ′.
As x′ ∈U(x)∩U ′ (by the definition of G ), we have U(x)∩U ′ 6= /0, i.e., the move to (∃,U ′) is a
legal move for ∀ in G II

µ (δV
p ) at position (∀,U(x)). As the latter is an element of Win∃(G II

µ (δV
p )), we

also have that (∃,U ′) ∈Win∃(G II
µ (δV

p )). Hence ∃’s winning strategy N in Win∃(G II
µ (δV

p )) specifies
a well-defined, legitimate move at U ′ that is conform ∃’s winning strategy in Win∃(G II

µ (δV
p )).

Therefore, in G , ∃ answers ∀’s move to (p,U ′) by moving to (δ ,y) with y = N(U ′) and continues
from there according to strategy fµ,y.

It is not difficult to check, that this describes indeed a winning strategy for ∃ in G from position (ϕ,x).
The key observation is that for any G -play of the form

π = (ϕ,x) . . .(p,x1)(δ ,U1)(δ ,y1) . . .(p,x2)(δ ,U2)(δ ,y2) . . .(p,xi)(δ ,Ui)(δ ,yi) . . .

there is a corresponding infinite play of G II
µ (δV

p ) of the form

π
′ = x (∀,U(x)) (∃,U1) y1 (∀,U(y1)) (∃,U2) y2 . . .(∀,U(yi−1)) (∃,Ui) yi . . .

which is conform ∃’s winning strategy in G II
µ (δV

p ) and where the number of fixpoint unfoldings in π ′ is
equal to the number of occurrences of positions of the form (p,x′) in π . As π ′ is won by ∃, the play π ′

must end after finitely many moves and hence there are only finitely many occurrences of positions of the
form (p,x′) in π , i.e., from a certain position (δ ,x′) on the play follows ∃’s strategy fµ,x′ in G at (δ ,x′).
In other words, such a play is won by ∃ as - modulo a finite prefix - it corresponds by our construction to
a fU(x′)-conform GU(x′)-play from position (δ ,x′) and fU(x′) is a winning strategy for ∃ at (δ ,x′).

We now turn to the proof of the implication from (4) to (2). Consider a strategy f for ∃ in G such that
f is winning for all positions in Win∃(G ) and let ∆ := {x ∈ X | (δ ,x) ∈Win∃(G )}. To prove our claim
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it suffices to show that ∆ ⊆ Win∃(G I
µ(δ

V
p )) by equipping ∃ with a suitable strategy in G I

µ(δ
V
p ) that is

winning at all positions in ∆. As before, we let unfoldp = {(p,x) | x ∈ X} and for all x ∈ ∆ we put

C(x) := {zy ∈ X | ∃y ∈ X .(p,y) is reachable in an unfoldp-full G -play π from (δ ,x) such that

π is conform ∃’s strategy f ,

∀ can move from (p,y) to position (p,Uy)

to which ∃’s reply according to her strategy f is to move to (δ ,zy) with zy ∈Uy}

Let x ∈ ∆ and let U ⊆ X be clopen with C(x)⊆U . With our definition of C(x), it can be easily seen that
∃ has a winning strategy at (δ ,x) in GU : Firstly, by Lemma 4.5, for each U ⊆ X we know that ∃ has a
strategy fU in GU at (δ ,x) such that every unfoldp-full G -play π conform f starting at (δ ,x) corresponds
to a full, fU -conform GU -play.

Suppose now for a contradiction that there is some U ′ ∈ Clp(X) with C(x) ⊆U ′ for which (δ ,x) 6∈
Win∃(GU ′). This implies that the strategy fU ′ cannot be winning for ∃ in GU ′ at (δ ,x) and thus there exists
some state (p,y) with y 6∈U ′ and with the property that (p,y) is reachable from (δ ,x) in an full G -play
π conform ∃’s strategy fU ′ . By definition of fU ′ , there exists a unfoldp-full G -play π from (δ ,x) to (p,y)
that is conform f . This leads to a contradiction: at position (p,y) in G - as y ∈ X \U ′ by assumption -
∀ could move to (p,X \U ′) and ∃ could choose an element zy ∈ X \U ′ and move to (δ ,zy) according to
her strategy f . By definition of C, we get zy ∈C(x)⊆U ′ and hence zy ∈U ′ which is a contradiction.

This finishes the proof of the fact that ∃ has a winning strategy at (δ ,x) in GU for any clopen set
U ⊆ X with C(x) ⊆U . Consequently, by (1), we have x ∈ δV

p (U) for all U ∈ Clp(X) with C(x) ⊆U .
This means that for each x ∈ ∆, ∃ can move from position x to position C(x) in G I

µ(δ
V
x ), i.e., C encodes a

legitimate strategy for ∃ in all positions x ∈ ∆. We are now going to prove that for any play

x C(x) x1 C(x1) x2 C(x2) . . .xn C(xn)

of G I
µ(δ

V
p ) starting in x and conform to ∃ strategy C it is possible to construct a “shadow” play of G

starting at (ϕ,x) that is conform to ∃’s winning strategy in G and that is of the form

(ϕ,x) . . .(δ ,x1) . . .(δ ,x2) . . .(δ ,xn).

It suffices to see how a round xi C(xi) xi+1 in G I
µ(δ

V
p ) is mirrored in G . To this aim note that xi+1 ∈C(xi).

Hence there exists some U ∈Clp(X) with xi+1 ∈U such that (p,U) is reachable from (δ ,xi) via a G -play
π conform to ∃’s winning strategy that is subsequently continued by ∃ by moving to position (δ ,xi+1).
Clearly the play π followed by ∃’s move to (δ ,xi+1) constitutes the required shadow play of G .

Example 4.7. We will give an example of an extremally disconnected modal space (X,R) with X =
(X ,τ), a clopen valuation V and a modal formula ϕ(q, p) such that the standard semantics of µq.ϕ and
the topological semantics of µq.ϕ differ. Let Z be the set of integers with the discrete topology. Let
X = β (Z) be the Stone–Čech compactification of Z. Then β (Z) is extremally disconnected, see eg [19].
We define a relation R on X by zRy iff (z,y ∈ Z and y = z+ 1 or y = z− 1 or z ∈ X and y ∈ β (Z) \Z).
Now we define a clopen valuation V (p) = {0}. Consider the formula ϕ(q, p) = p∨33q. The standard
semantics of µq.ϕ is equal to the set of all even and negative even numbers. The topological semantics,
in contrast, is equal to the whole space X .

5 Bisimulations

We are now going to describe bisimulations for our topological setting. The definition is essentially the
standard one with an additional topological condition.
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Definition 5.1. Let M1 = (X1,R1,V ) and M2 = (X2,R2,V ) be extremally disconnected Kripke models
based on the spaces X1 = (X1,τ1) and X2 = (X2,τ2). A relation Z ⊆ X1×X2 is called a clopen bisimu-
lation iff Z ⊆ X1×X2 is a (standard) Kripke bisimulation and for any clopen subsets U1 ∈ Clp(X1) and
U2 ∈ Clp(X2) we have Z[U1] = {x′ ∈ X2 | ∃x ∈U1.(x,x′) ∈ Z} ∈ Clp(X2) and Z−1[U2] = {x ∈ X1 | ∃x′ ∈
U2.(x,x′) ∈ Z} ∈ Clp(X1).

The justification for the notion of clopen bisimulations is provided by the following proposition.

Proposition 5.2. Let Z be a clopen bisimulation between extremally disconnected Kripke models M1 =
(X1,R1,V ) and M2 = (X2,R2,V ). Then for any formula ϕ ∈Lµ of the modal µ-calculus and any states
x ∈ X1 and x′ ∈ X2 such that (x,x′) ∈ Z, we have x ∈ [[ϕ]] iff x′ ∈ [[ϕ]].

Proof. Suppose that (x,x′) ∈ Z and that x ∈ [[ϕ]] for some formula ϕ . This implies by our adequacy
theorem that (ϕ,x) ∈ Win∃(E (ϕ,M1)). We are now going to transform ∃’s winning strategy in G1 =
E (ϕ,M1) at position (ϕ,x) into a winning strategy for ∃ in G2 = E (ϕ,M2) at position (ϕ,x′).

As a preparation we need to define when we consider positions of G1 and G2 to be equivalent: we say
(ψ1,x1) ∈Lµ ×X1 and (ψ2,x2) ∈Lµ ×X1 are Z-equivalent if ψ1 = ψ2 and (x1,x2) ∈ Z. Furthermore
we write (p,U1)≤Z (q,U2) for (p,U1) ∈Lµ ×Clp(X1) and (p,U2) ∈Lµ ×Clp(X2) if p = q and if for
all x ∈U1 there exists x′ ∈U2 such that (x,x′) ∈ Z. Similarly we define (p,U1)≥Z (q,U2). Consider two
(possibly partial) plays π1 = b1 . . .bk and π2 = b′1 . . .b

′
l of G1 and G2, respectively. We say π1 and π2 are

Z-equivalent iff k = l and for all i = 1, . . . ,k we have

• bi and b′i are of the form bi = (ψ,x) and b′i = (ψ,x′) and both positions are Z-equivalent, or

• bi = (p,U1), b′i = (p,U2), p is bound by µ and (p,U1)≤Z (p,U2), or

• bi = (p,U2), b′i = (p,U2), p is bound by ν and (p,U1)≥Z (p,U2).

Let π1 be a play of G1 that starts in ∃’s winning position (ϕ,x) and that is played according to ∃’s
winning strategy. We are going to show that if π2 is a Z-equivalent play of G2 that starts at position
(ϕ,x′), then either

• both plays π1 and π2 are full (and thus won by ∃) or

• it is ∃’s turn and ∃ has a strategy to extend π2 to a play π2b′ that is Z-equivalent to an extension
π1b of π1 such that π1b is a G1-play conform to ∃’s winning strategy, or

• it is ∀’s turn and for all of ∀’s moves that extend π2 to π2b′ there is a move of ∀ in G1 such that the
resulting play π1b of G1 is Z-equivalent to π2b′.

Clearly this claim will imply that ∃ has a winning strategy in G2 at position (ϕ,x′) as required. The claim
is proven by a case distinction on the last state of π2. Due to space reasons we only discuss the cases of
the modal diamond and the (least) fixpoint cases.
Case: π2 = b′1 . . .b

′
n(3ψ,x2). By assumption there exists a Z-equivalent play π1 = b1 . . .bn(3ψ,x1)

which in particular implies that (x1,x2) ∈ Z. Clearly it is ∃’s turn and she can prolong the G1-play by
moving according to her strategy to (ψ,y) for some y ∈ X1 with (x1,y) ∈ R1. As Z is a bisimulation we
know that there must be y′ ∈ X2 such that (x2,y′)∈ R2 and (y.y′)∈ Z. Hence ∀ can prolong the π2-play by
moving to (ψ1,y′) and the resulting plays π1 = b1 . . .bn(3ψ,x2)(ψ,y) and π2 = b′1 . . .b

′
n(3ψ,x1)(ψ,y′)

are Z-equivalent.
Case: π2 = b′1 . . .b

′
n(p,x2) for some p ∈ BVar(ϕ) that is bound by a µ-operator. In this case π1 =

b1 . . .bn(p,x1) and its ∀’s turn to continue both plays. Let ∀’s move in G2 be to (p,U2) for some clopen
subset U ∈ Clp(X2) with x2 ∈U2 . Because (x1,x2) ∈ Z and by the definition of a clopen bisimulation
we have that U1 := Z−1[U2] is a clopen neighbourhood of x1. Therefore ∀ could extend the G1-play
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by moving to (p,U1). The resulting plays π1 = b1 . . .bn(p,x1)(p,U1) and π2 = b′1 . . .b
′
n(p,x2)(p,U2)

are clearly Z-equivalent because all elements U1 have their Z-correspondant in U2 and hence we have
(p,U1)≤P (p,U2) as required.
Case: π2 = b′1 . . .b

′
n(p,U2) for some p ∈ BVar(ϕ) that is bound by a µ-operator. By assumption we have

a Z-equivalent G1-play π1 = b1 . . .bn(p,U1) with the property that (p,U1)≤Z (p,U2). By the definition of
the game it is clear that in both plays ∃ has to move. She continues π1 by moving according to her winning
strategy to some (ψ,y) with y ∈U1. By definition of ≤Z there exists a y′ ∈U2 such that (y,y′) ∈ Z and
hence ∃ can extend the play π2 by moving to (ψ,y′). Again the resulting plays π1 = b1 . . .bn(p,U1)(ψ,y)
and π2 = b1 . . .bn(p,U2)(ψ,y′) are obviously Z-equivalent. The other cases of the induction can be dealt
with in a similar fashion. This shows that from x ∈ [[ϕ]] and (x,x′) ∈ Z we are able to deduce x′ ∈ [[ϕ]].
The implication in the opposite direction can be proven in a completely symmetrical way. As ϕ was
arbitrary we conclude that clopen bisimilarity implies equivalence with respect to the topological modal
µ-calculus.

Remark 5.3. We leave it open whether the converse of Proposition 5.2 also holds, i.e., whether we have
a Hennessy-Milner property wrt our notion of clopen bisimulation. A closely related question is how
our clopen bisimulations compare to the Vietoris bisimulations of [4]. It is obvious that the topological
closure of a clopen bisimulation is a Vietoris bisimulation and hence that clopen bisimilarity implies
Vietoris bisimilarity. Proving the converse would yield the Hennessy-Milner property with regard to
clopen bisimilarity as a corollary of [4, Cor. 3.10].

6 Conclusions and future work

In this paper we developed game semantics for topological fixpoint logic on extremally disconnected
modal spaces. These results can be seen as first steps towards the theory of topological fixpoint logic
in general and towards admissible game semantics of µ-calculus in particular. As next steps we intend
to extend this framework to other classes of descriptive µ-frames and to devise automata that operate
on Kripke frames over topological spaces. This will provide a deeper understanding of these structures
as well as of axiomatic systems of the modal µ-calculus, since axiomatic systems of the µ-calculus
are complete wrt descriptive µ-frames. Other important questions concern the finite model property,
decidability and computational complexity and other key properties of topological fixpoint logics.

A further interesting research direction is to investigate modal fixpoint logic of Kripke frames based
on compact Hausdorff spaces and beyond. However, instead of clopen sets we will have to work with
regular open sets in this setting. This means we will enter the realm of modal compact Hausdorff spaces
introduced in [3]. These are exactly the spaces that correspond to coalgebras for the Vietoris functor on
the category of compact Hausdorff spaces. Sahlqvist fixpoint correspondence for such spaces has been
developed already in [7]. I This approach could pave the way for an expressive and decidable fixpoint
logic for the verification of continuous systems or, more generally, systems that combine discrete and
continuous systems such as hybrid automata [13].

Finally, we want to clarify the connection of our work to topological games à la Banach-Mazur [20].
These games are similar to our fixpoint games as players move by choosing e.g. open subsets - the
fundamental differences are i) they characterise properties of the topology rather than properties of a
relational structure over a topological space and ii) our parity winning condition that ensures determinacy.
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[20] R. Telgársky (1987): Topological games: On the 50th anniversary of the Banach-Mazur game. Rocky
Mountain J. Math. 17, pp. 227–276, doi:10.1216/RMJ-1987-17-2-227.

[21] Y. Venema (2004): A dual characterization of subdirectly irreducible BAOs. Studia Logica 77(1), pp. 105–
115, doi:10.1023/B:STUD.0000034188.80692.46.

[22] Y. Venema (2012): Lectures on the modal µ-calculus. Unpublished Manuscript. Available at https://
staff.fnwi.uva.nl/y.venema/teaching/ml/mu/mu20121116.pdf.

[23] I. Walukiewicz (2000): Completeness of Kozen’s axiomatisation of the propositional µ-calculus. Information
and Computation 157(1-2), pp. 142–182, doi:10.1006/inco.1999.2836. LICS 1995 (San Diego, CA).

http://dx.doi.org/10.1016/0304-3975(95)00045-X
http://dx.doi.org/10.1093/logcom/exs030
http://dx.doi.org/10.1093/logcom/exn091
http://dx.doi.org/10.1007/s00012-012-0196-x
http://dx.doi.org/10.1016/j.tcs.2011.11.026
http://dx.doi.org/10.1093/logcom/exv010.
http://dx.doi.org/10.1017/CBO9781107050884
http://dx.doi.org/10.1007/978-3-642-12032-9_12
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/j.tcs.2004.07.023
http://dx.doi.org/10.1016/j.apal.2007.11.001
http://dx.doi.org/10.1016/j.apal.2010.07.003
http://dx.doi.org/10.1216/RMJ-1987-17-2-227
http://dx.doi.org/10.1023/B:STUD.0000034188.80692.46
https://staff.fnwi.uva.nl/y.venema/teaching/ml/mu/mu20121116.pdf
https://staff.fnwi.uva.nl/y.venema/teaching/ml/mu/mu20121116.pdf
http://dx.doi.org/10.1006/inco.1999.2836

	Introduction
	Preliminaries
	Two Player graph games
	Tarski's fixpoint game
	Topological preliminaries
	Modal -calculus on topological spaces: denotational semantics

	Games for monotone operators on topological spaces
	Game semantics for the -calculus on topological spaces
	Bisimulations
	Conclusions and future work

