Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Games for topological fixpoint logic

Bezhanishvili, Nick and Kupke, Clemens (2016) Games for topological fixpoint logic. In: Proceedings of the Seventh International Symposium on Games, Automata, Logics, and Formal Verification. Electronic Proceedings in Theoretical Computer Science, pp. 1-15.

[img]
Preview
Text (Bezhanishvili-Kupke-GandALF-2016-games-for-topological-fixpoint-logic)
Bezhanishvili_Kupke_GandALF_2016_games_for_topological_fixpoint_logic.pdf - Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (243kB) | Preview

Abstract

Topological fixpoint logics are a family of logics that admits topological models and where the fixpoint operators are defined with respect to the topological interpretations. Here we consider a topological fixpoint logic for relational structures based on Stone spaces, where the fixpoint operators are interpreted via clopen sets. We develop a game-theoretic semantics for this logic. First we introduce games characterising clopen fixpoints of monotone operators on Stone spaces. These fixpoint games allow us to characterise the semantics for our topological fixpoint logic using a two-player graph game. Adequacy of this game is the main result of our paper. Finally, we define bisimulations for the topological structures under consideration and use our game semantics to prove that the truth of a formula of our topological fixpoint logic is bisimulation-invariant.