Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Intervals of permutation class growth rates

Bevan, David (2016) Intervals of permutation class growth rates. Combinatorica. ISSN 1439-6912 (In Press)

[img]
Preview
Text (Bevan-Combinatorica-2016-Intervals-of-permutations-class-growth)
Bevan_Combinatorica_2016_Intervals_of_permutations_class_growth.pdf - Accepted Author Manuscript

Download (388kB) | Preview

Abstract

We prove that the set of growth rates of permutation classes includes an infinite sequence of intervals whose infimum is θB ≈ 2.35526, and that it also contains every value at least λB ≈ 2.35698. These results improve on a theorem of Vatter, who determined that there are permutation classes of every growth rate at least λA ≈ 2.48187. Thus, we also refute his conjecture that the set of growth rates below λA is nowhere dense. Our proof is based upon an analysis of expansions of real numbers in non-integer bases, the study of which was initiated by Rényi in the 1950s. In particular, we prove two generalisations of a result of Pedicini concerning expansions in which the digits are drawn from sets of allowed values.