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Abstract: The present analysis extends the author’s earlier work (Lappa, Phys. Fluids, 26, 093301, 
2014) on the properties of patterns formed by the spontaneous accumulation and ordering of solid 
particles in certain types of flow. It is shown that under certain conditions, when subjected to 
vibrations to induce natural flow, non-isothermal fluids with dispersed solid particles are 
characterized by intervals of solid-pattern-forming behaviour due to particle rearrangements 
preceded by intervals in which no recognizable structures of solid matter can be detected. The 
dynamics of these systems are highly nonlinear in nature. Because this new family of particle 
attractors is known to exhibit strong sensitivity to the “symmetry properties” of the considered 
vibrated system and related geometrical constraints, the present study attempts to clarify the related 
dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming 
vibrations always directed perpendicularly to the imposed temperature gradient, we show that the 
morphology, spatial extension (percentage of physical volume occupied), “separation” (spatial 
distance) and mechanisms responsible for the formation of the resulting particle structures change 
significantly according to whether the temperature gradient is parallel or perpendicular to the 
symmetry axis of the cylinder. This indicates that the “physics” is not invariant with respect to 90 
rotations in space of the specific forcing considered (direction of the imposed temperature gradient 
and associated perpendicular vibrations). Additional insights into the problem are obtained by 
assessing separately the influence played by the time-averaged (mean) and oscillatory effects. 
According to the numerical results, the intriguing diversity of particle agglomerates results from the 
different role/importance played by (curved or straight) boundaries in constraining particles and, 
from the different structure and topology of the resulting macroscopic (large-scale) 
thermovibrational flow oscillating in time at the same acceleration frequency of the imposed 
vibrations. 
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I. Introduction 
 

Fluids with dispersed solid particles have been widely used in industry. These applications span 

such diverse fields as cooling systems for nuclear reactors, heat exchangers, solar energy collectors, 

electronic industry and a variety of modern processes for the production of new materials with 

improved physical and chemical properties (e.g., structural materials for marine and aerospace 

engineering, many types of composites, electrical conductors, and magnetic substances). Notably, 

the properties of these products are linked to their microscopic structure (their electrical and/or 

mechanical properties can be ascribed to characteristics such as high disorder, caging, and/or 

particle clustering on multiple length scales), which makes the study of the solid-liquid pattern 

formation a topic of great interest to materials engineers (see, e.g., Segurado et al. [1]).  

In spite of their great potentials, however, these special fluids are still in an early stage of 

exploitation. Indeed, from a theoretical viewpoint, such solid-liquid mixtures still represent a rather 

complex problem because of the fact that it appears very difficult, if not to say practically 

impossible, to formulate any theory that can predict “a priori” their behaviour.  

Among the phenomena to be taken into account for a possible prediction of the final distribution of 

particles in the liquid matrix, one should mention: sedimentation (in the Earth’s gravitational field 

the usual differences in density cause rapid spatial separation of the solid phase through 

sedimentation or flotation), the application of other body forces (e.g., electric and/or magnetic fields) 

and inertial clustering (the process of spontaneous grain aggregation determined by particle specific 

inertia and viscous drag in the presence of fluid convection). 

In the present work, given the recent resurgence of theoretical studies exploring the consequences 

of particle clustering mechanisms [2-11] and in view of the generality of these structure-forming 

processes, we expressly concentrate on situations where particle inertia acts as the main pattern-

forming driver. In particular, we consider particle aggregation and ordering mechanisms operating 

under the effect of “alternating” flows induced by “vibrations” (i.e. body accelerations varying 

sinusoidally in time). The specificity of the considered situation lies in the  nature of the driving 

force, which has zero-time averaged value and which, accordingly, makes linear effects negligible; 

thereby only nonlinear effects are expected to be significant (even if they are small compared to the 

instantaneous linear effects). The reason of such a choice also resides in the fact that, like magnetic 

fields, vibrations allow contactless control of the flow and dispersed particles, but, unlike magnetic 

fields, they may be regarded as a new technique that can be used more universally, because its 

application is not limited to electrically conductive melts and particles. 

Since the author’s earlier analysis [12] was entirely concentrated on a geometrical configuration 

with straight walls (a cubical cavity) and a fixed direction of the temperature gradient, here we 

allow the problem to span two additional degrees of freedom, namely the presence of curved 

sidewalls (cylindrical configuration) and the relative direction of the imposed temperature gradient 

and vibrations with respect to such sidewalls.    
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Natural convection induced by steady (terrestrial) gravity in fluid-filled cylindrical enclosures has 

received enormous attention over the past several years due to its wide applications in engineering 

and technology [13-22]. For similar studies considering convective effects induced by time-varying 

accelerations rather than steady gravity, the reader may consider [23-31]. 

For what concerns the dynamics of solid particles transported by natural flows in such cylindrical 

configurations, available efforts seem to be very rare and sparse. Most of analyses have 

concentrated on the case of particle clustering supported by Marangoni convection ([32] and 

references therein, see also [33, 34]), or Rayleigh-Bénard flow [35], which, however, pertain to a 

different category of phenomena.  

As outlined above, in this analysis, neither a steady external force field nor surface-tension-driven 

effects are considered; rather the dynamics are entirely produced by the “interplay” between an 

acceleration field varying sinusoidally in time, the resulting thermovibrational flow and the 

response of particles (depending on their specific mass and size). 

 

II. Mathematical formulation 

 

A. Vibrations 

Perturbations induced in a fluid by a sinusoidal displacement of a fluid system along a given 
direction ( n̂  is the related unit vector)   nts ˆt)bsin(   where b is the amplitude and =2f (f is 

the frequency), induce an acceleration   ngtg ˆt)sin(   where 2 b  g [36]. Such inertial 

perturbations are known to affect “inhomogeineities” present in the considered fluid system (see, 

e.g. [37]). These inhomogeineities may be due, on the one hand, to density variations induced in the 

fluid by temperature gradients (which lead to the so-called thermovibrational flow, [38-40]) and, on 

the other hand, (see, e.g., [41]) to the granular structure of the considered two-phase system (an 

assembly of hard spheres dispersed in the liquid in the present case). The related principles and 

governing equations will be illustrated in Sects. IIC and IID, respectively. 

 

B. The System 

Insights are sought from consideration of an archetypal setting corresponding to a differentially 

heated cylindrical cavity. In particular, a cylindrical enclosure with height/diameter ratio 

A=L/D=0.75 filled with NaNO3 (sodium nitrate with Pr=8) is considered. Following earlier 

computational studies reported in this area for the case of steady gravity (see the introduction for 

existing studies in the literature), three main configurations are defined in the present work for what 

concerns thermal boundary conditions: a) Differentially heated cylindrical enclosure with adiabatic 

conditions on the lateral wall, b) Cylindrical enclosure limited axially by insulated solid walls with 

a temperature on the lateral wall varying as a sinusoidal function of the azimuthal angle, c) 

intermediate configuration with temperature varying along both the axial and the azimuthal 

directions (Fig. 1) 
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As the flow of thermovibrational nature induced by vibrations is known to be very sensitive to the 

relative angle between the imposed temperature gradient and the direction of vibrations [42], with 

the emerging convection being very weak or absent when such directions are parallel (degenerate 

situation), here, in particular, without loss of generality, we concentrate expressly on the case of 

imposed periodic accelerations perpendicular to the imposed temperature difference T (Fig. 1). 

 

 a) 

    b) 

 c) 
 
 

Figure 1: Sketch of configuration under investigation: a) Cylinder with differentially heated ends 
and adiabatic sidewall subjected to vibrations perpendicular to its axis, b) Cylinder with insulated 
ends and nonisothermal sidewall (temperature varying as a sinusoidal function of the azimuthal 
angle) subjected to vibrations parallel to its axis, c) Cylinder with temperature varying on the 
boundary along both the axial and the azimuthal direction and vibrations perpendicular to the 
imposed temperature gradient. 
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C. Nondimensional balance equations 

 

Variables are non-dimensionalized using conventional scalings: the co-ordinates by the axial 
system extension (L) and the velocity V by the energy diffusion velocity V = /L where  is the 

fluid thermal diffusivity; time and pressure (p) by, respectively, L/ and /Lwhere  is the 

fluid density. Moreover, the temperature is measured with respect to its initial value Tm  and is 

made nondimensional as T=(T Tm )/T. 

In such a framework and using the Boussinesq approximation to account for the presence of body 

accelerations as defined in Sect. IIA, the continuity and momentum equations simply read: 
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can be regarded as a variant of the classical Rayleigh number with the 

steady acceleration being replaced by the amplitude of the considered periodic acceleration (T is 

the thermal expansion coefficient). The problem, therefore, is reduced to four independent 

nondimensional parameters only, where the first is the well-known Prandtl number (Pr=where  

is the fluid kinematic viscosity) and the others are the nondimensional frequency (), the 

nondimensional acceleration amplitude () and  buoyancy factor () defined as:  
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Accordingly, the momentum equation can be recast in condensed form as: 
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where, obviously Ra= /Pr
This equation must be supplemented with the energy balance equation that with the considered 

reference units in nondimensional form reads: 
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For t=0, initial conditions corresponding to liquid at rest and thermally diffusive conditions are 

assumed. For  t > 0, the boundary conditions at the solid walls simply reflect the well-known no-slip 

and impermeability properties of solid boundaries (V=0). We do not report them here explicitly for 

the sake of brevity (and given their extreme simplicity). For problem closure, such conditions, 

however, have to be supplemented with those for the energy equation, which change according to 

whether the configuration of Fig. 1a, 1b or 1c is considered. In the first case, the top and bottom 

(z=±0.5) walls of the domain are assumed here to be at uniform and constant (nondimensional) 

temperatures:  

 

T0=1/2   at (z=-0.5)        (6a) 

T1=-1/2    at (z=0.5)        (6b) 

 

while the lateral boundary is adiabatic, i.e.  

 

T/r=0 at r=1/2A, 02, -0.5<z<0.5       (6c) 

 

For the second configuration, such conditions have to be replaced by  

 

T/z=0  at (z=0.5)          (7a) 

 

T=½sin() at r=1/2A,  02, -0.5<z<0.5       (7b) 

 

For the third case, they read 

 

T=-½ [½sin()+z] at r=1/2A, 02, -0.5z0.5      (8a) 

 

T=-½ [½sin()+z] at 0r1/2A, 02 at (z=0.5)     (8b) 

 

D. The Dispersed Phase 

 

The dynamics of particles are treated using the approach originally introduced by Maxey and Riley 

[43]). Such approach relies on the assumption that the particle velocity can be decomposed into two 

different contributions, i.e. Vpart(r, t) = V(r, t) + v1(r, t), where V is the velocity of the undisturbed 

flow at the same spatial position occupied by the considered particle (which would result if the 

boundary conditions at the particle surface were not applied), while v1 has to be regarded as the 

“perturbative” component created by the fluid-particle interaction.  

From physical arguments, it is known that the fluid force on the particle depends on the local fluid 

inertia (proportional to the local material derivative of V) and also to the local stress created by the 

presence of the particle. In particular, the relaxational part of the particle inertia is strictly related to 
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its mass resistance (preventing it from following instantaneously the velocity of the surrounding 

fluid), whereas the fluid drag tends to damp the particle velocity towards the local fluid velocity 

(within an inertial time  that scales with the particle radius R
~

 as 2 R
~ 2/9) [44]. 

These effects can be properly modeled by considering relevant viscous and inertial terms in the 

aforementioned Lagrangian equations used to track the evolution of the particle in space and time.  

Despite this obvious way of thinking, however, some additional simplifying assumptions have to be 

invoked. These additional conditions concern the reciprocal influence of particle motion on the 

large-scale flow and the particle-particle interplay ([44-46]). Following a common practice in the 

related literature ([32]), here the so-called dilute particle model is used, i.e. it is assumed that while 

particles are transported by the large-scale flow, the influence they exert on such a flow and among 

them is negligible, in other words, the perturbative flow v1 has a negligible effect on the 

unperturbed field (in the presence of vibrations, as shown by several authors, this assumption is 

reliable if the concentration of the dispersed phase in the flow is small, i.e. if the distance of a 

particle from others is much larger than their diameter; see, e.g. [2, 47-48]; the interested reader is 

referred, in particular, to Figure 4 in [2]). 

Within such a framework, the resulting particle transport equation reads: 
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where  is the angle between the direction of the imposed vibrations and the xy plane,  is the ratio 

of the particle to the fluid density and (upart, vpart, wpart) and (u, v, w) are the particle and fluid (axial, 

radial and azimuthal) velocity components, respectively. Moreover 
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As discussed, e.g., in [41], the underlying assumptions on which this approach is based are a 

perfectly spherical shape of the solid particles and a very small value (<<1) of the particle to fluid 

system characteristic size ratio LR /
~

 (where R
~

 is the solid particle radius). This implies St=/L2 

<<1 where is the aforementioned particle relaxation time and St is the well-known Stokes number. 

Although equation (9) properly accounts for the motion of solid particles in the liquid phase, it is 

clear, however, that particles moving close to the solid boundaries require a special treatment (given 

the no-slip properties of such surfaces acting as sinks of momentum and, therefore, as a potential 

particle-entrapping loci). Following earlier studies, in particular, we assume particles to interact in a 

non-elastic fashion with walls [32,33].  

 

E. Numerical Method and Code Validation for Buoyancy Flow 

 

Balance equations (1-5) have been solved numerically by a time-explicit finite-difference method 

(primitive-variable method) based on a cylindrical mesh and a staggered collocation of fluid-

dynamic variables. Forward differences in time and central-differencing schemes in space (second 

order accurate) have been used to discretize the energy and momentum governing equations. The 

related solution strategy is not discussed here, the interested reader being referred to various books 

in the literature for an exhaustive treatment, see, e.g. [49] (here, we just limit ourselves to recalling 

that such an approach is based on the well-known pressure-velocity coupling strategy based on the 

application of the momentum equation to derive an equation for pressure via the time-discretized 

continuity equation). For the specific case of convection induced by buoyancy the present code was 

validated through comparison with the classical 3D solutions reported by Bontoux et al. [16], see 

Fig. 2.   

 

Figure 2: Comparison with the results reported by Bontoux et al. [16]: differentially heated 
horizontal cylinder with L= 10-1 m, A=5, Pr=0.73, Ra=1.87x104 (NzxNrxNmesh 65x16x32). 
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2.6 Case of interest 

The properties of the considered solid-liquid system are summarized in Table I. 

TABLE I: Liquid-solid system properties  

Fluid (NaNO3) density ρ, [kg m-3] 1904 

Kinematic viscosity , [m2s-1] 1.27 × 10−6 

Thermal diffusivity , [m2s-1] 1.58 × 10−7 

Thermal expansion coefficient βT , [K-1] 1.25 × 10−3 

Particle/liquid density ratio  [-] 1.85 

 

 

Assuming as axial extension of the cylindrical enclosure L=2x10-2 m, the following values of 

characteristic nondimensional parameters are considered: =103, =1.5x106 which correspond to 

Ra =1.58x104. This is also equivalent to considering a value of the so-called Gershuni Number:  
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Such a parameter (which, in general, accounts for the intensity of time-averaged convection 

resulting from the application of high-frequency vibrations, see, e.g., [42]), is fixed to Gs = 103, so 

as to guarantee that time-averaged convective effects of thermovibrational nature are very small 

with respect to the oscillatory component of fluid velocity. This also guarantees a negligible 

departure of the time-averaged temperature field from the purely diffusive conditions (i.e. the 

distribution of temperature inside the enclosure can be assumed to be almost linear).  

The density of the particles is also considered fixed: =1.85, such a value corresponding to typical 

tracers used in experiments with NaNO3 (Melnikov et al. [4]). Their characteristic size gives =(-

1)St/Pr=10-4, this value of  being a good compromise between two opposite needs (as further 

explained in the following). As shown by Lappa [12] (to which the reader is referred for an 

exhaustive treatment of such aspects), the formation of recognizable particle structures in the 

presence of thermovibrational flow takes a time that decreases as the particle size is increased;  

particle accumulation, however, is found not to occur when the particle size exceeds a given 

threshold. Accordingly, the specific value =10-4 has been selected in the present work with the 

two-fold purpose to shorten the otherwise computationally prohibitive time required for the 

formation of well-defined particle patterns on the one hand, and not to exceed the abovementioned 

limit in terms of particle size (beyond which such patterns are no longer formed), on the other hand.  
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F. Grid Refinement Study and Code Validation for Thermovibrational Convection 

 

The ability of the present code to correctly capture the particle dynamics in flows of “oscillatory 

nature” in cylindrical geometries was already assessed to a certain extent in earlier studies. As an 

example this was verified for the case of a “travelling wave” in [33] (where the results provided by 

the present code were quantitatively compared with those by Melnikov et al. [4]) and in Lappa [34] 

for the case of a “standing wave” (where the present code was used to reproduce the dynamics 

presented by Schwabe and Mizev [10]). The limits of applicability of the considered multiphase 

approach in capturing particle dynamics induced by high-frequency vibrations were further assessed 

by [41] (all these studies considered the same value of the Prandtl number assumed here, namely 

Pr=8). 

As usual, in the present work, the convergence behavior of the code in terms of its ability to 

produce a mesh independent solution (both in terms of fluid velocity field and resulting particle 

structures) has been assessed via an “a priori” grid tailoring process.  

In particular, such an assessment has been conducted assuming as “sensitive” parameters (to check 

grid convergence) the maximum (asymptotic) value attained by each of the velocity components u, 

v, w. Owing to the nature of the specific problem under investigation (able to produce a “steady 

mean flow” field as well as well-defined particle structures with time-independent “properties”), 

such a study has also taken into account time-averaged quantities and “measurable” characteristics 

of the emerging particulate structures. The time-averaged velocity components have been 

computed, respectively, as 
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with the velocity components being provided by the solution of the set of equations presented in 

Sect. IIC 

For code validation purposes, these quantities (and related patterns in space) have been also 

determined resorting to an independent code based on the solution of the so-called Gershuni’s 

system of equation. These alternate sets of equations, based on the introduction of a “potential 

flow” variable, can be used to determine directly the time-averaged flow with no need to solve the 

complete set of Navier-Stokes equations (these equations, traditionally used in the literature for 

validation purposes in the case of flows with thermovibrational nature, are not described here due to 

page limits, the reader being referred, e.g. to [38] for additional details). 

As a relevant and representative case for such an extensive assessment, in particular, we focused on 

the case corresponding to the conditions shown in Fig. 1b, for which the emerging particle 

structures have a relatively simple shape that allows their typical “size” to be measured precisely 

(namely, the “lengths” e1 and e2, representing the axes of the elliptical cross section given by the 

intersection of the emerging particle structures with the center plane yz, see Fig. 3) 
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Figure 3: Sketch of cylindrical enclosure, related thermal boundary conditions, imposed vibrations 
and emerging particulate aggregates. 
 
 
The outcomes of such a parametric investigation are summarized in Table II.  
 
TABLE II: Grid refinement study: maximum of the velocity components of the V  and V and 

fields and size of the axes e1 and e2 shown in Fig. 3 as a function of mesh resolution (cylindrical 
enclosure with differentially heated sidewall and adiabatic ends, vibrations along the z axix, Pr=8, 
A=0.75, =1x103, Ra=1.58x104, t=0.56). 

 
NzxNrxN umax vmax wmax 
20x14x20 22.090459 23.988021 22.126823 
27x18x27 21.886765 23.898973   21.874763 
41x27x41 21.825312 23.857689   21.842886 
49x33x49 21.814679 23.835055   21.835362 

 

Mesh 
max

u  
max

v  
max

w  e1 x 2 e2 x 2 

20x14x20 0.3027287  0.3739038 0.2536782 0.082 0.234 
27x18x27 0.3023345  0.3685796 0.2423693 0.094 0.253 
41x27x41 0.3021813  0.3552482 0.2318292 0.118 0.270 
49x33x49 0.3020539 0.3531231 0.2296784 0.121 0.274 

 

 

 

41x27x41 
max

u  
max

v  
max

w  

Present code 0.3021813 0.3552482 0.2318292 
Gershuni’s 
framework 

0.2987363 0.3489834 0.2268736 



12 
 

Table IIa indicates that grid-independence of the flow of thermovibrational nature could be attained 

even with the coarsest mesh considered in the table (the values obtained with a grid 20x14x20 

match with a reasonable approximation (<1%) the values obtained with finer grids). This result can 

be easily explained according to the nature of the emerging flow, which apart from being very slow, 

is regular and smooth in time and space with no thermal or kinematic boundary layers.  

The velocities shown in Table II would correspond in dimensional form for a cylinder with height 

2x10-2 m to a maximum velocity  2x10-4 m/s and a maximum corresponding time-averaged 

velocity 2x10-6 m/s (among other things this also confirms our initial assumption about the time-

averaged convective effects of thermovibrational nature being very small with respect to the 
oscillatory component of fluid velocity, i.e. 2

maxmaxmaxmaxmaxmax
10///  wwvvuu ). 

Nevertheless, Table IIb also clearly indicates that a finer mesh is required for attaining a reasonable 

level of convergence in the typical size of the resulting particle structures (a mesh with at least 

NzxNrxN=41x27x41 points is required to make the percentage variation of e1 and e2 less than 3% 

with respect to the next row in the table). Additional validation for the present code was provided 

by the very good agreement between the time-averaged quantities obtained in the framework of the 

so-called Gershuni’s approach discussed before (Table IIc). Figure 4, shows the time-averaged 

pattern in the yz plane, corresponding to the well-known “quadrupolar field” (Khallouf et al. [50], 

Mialdun et al. [51]) that emerges in closed cavities for vibrations perpendicular to the temperature 

gradient.   

 
 

Figure 4: Classical “quadrupolar”  flow field in the yz plane obtained by a) time-averaging of the 
oscillatory solution, b) integration of the Gershuni’s equations (cylinder with insulated ends and 
nonisothermal sidewall with temperature varying as a sinusoidal function of the azimuthal angle, 
vibrations along the z axix, Pr=8, A=0.75, =1x103, Ra=1.58x104).  

 

 

 
III. Results 

 

The author’s earlier analysis [12] was entirely concentrated on a geometrical configuration with 

straight walls (a cubical cavity) and a fixed direction of the temperature gradient, allowing most of 

the involved parameters (the amplitude and angular frequency of the acceleration disturbance, the 

characteristic nondimensional number Ra and the particle Stokes number to span relatively wide 
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ranges). As the focus here is on the influence of curved walls in producing new specific (previously 

unseen) behaviours, we keep constant most of those parameters (Pr=8, A=0.75, =1x103, 

Ra=1.58x104,=1.5x106, and =1x10-4) while allowing the specific forcing considered (direction 

of the imposed temperature gradient and associated perpendicular vibrations) to have different 

orientations in space (as shown in Fig. 1). To track the system evolution, solid particles (4x104) 

are initially seeded uniformly into the computational domain assuming their velocity equal to zero 

(to reflect the quiescent conditions of the surrounding liquid).  

 

A. Differentially heated ends and adiabatic sidewall 

 

1. The Thermofluid-dynamic Field   

 

Figures 5 and 6 show the spatio-temporal evolution of the velocity and temperature field during half 

of a cycle of forcing in the case (a) of a temperature gradient parallel to the system symmetry axis, 

insulated sidewall and vibrations aligned with the x axis. It is worth starting the related discussion 

from the relatively simple observation that while, as expected (due to the relatively small value of 

the Gershuni number), the departure of the temperature field from purely diffusive conditions (a 

purely linear distribution of temperature along the z axis) is relatively weak (see Figure 5), well-

defined convective structures are visible at any instant in any cross section z=const (e.g., z=0, see 

Figure 6).  

 

a) b) 
 
Figure 5: Snapshots of temperature distribution in the meridian plane xz (=0) at two instants 
during the period  of oscillation (case A, contour legend: level 1T=-0.45, level 20 T=0.45, 
level0.05): a) t =t0, b) t =t0+ /2(=2/). 
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a) b) 

 
Figure 6: Snapshots of velocity field in the cross section z=0 at two instants during the period  of 
oscillation (case A): a) t =t0, b) t =t0+/2 (=2/). 

 

In practice, regardless of the considered time, convective flow consists essentially of two main rolls 

with axis extended along the z direction, one being the mirror image of the other and sense of 

circulation depending on the specific instant considered within the cycle of forcing.   

 

 

 
 

 
Figure 7: Sequence (sketch) showing the evolution of vibrations-induced convective cells in the 
generic cross section z=const during one period of oscillation (case A).  

 

The intersection of such axial rolls with cross-sections z=const produces two apparent cells, one 

clockwise and the other anticlockwise oriented. These convective cells are not stationary and 

change their sense of rotation periodically (their intensity is not constant in time; if the considered 

convective cell is clockwise oriented during the first half-period of oscillation, then during the 

second half it vanishes and finally reappears in the same position anticlockwise oriented, see Fig. 7). 
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a) b) 

 

Figure 8: Mental divisibility (topology) of the flow configuration (sketch)  

 
 

Therefore, a clear distinguishing mark of this convective mode is the mental divisibility (topology) 

of the flow configuration in two semicircular regions (such a divisibility can be sketched, as shown 

in Figure 8,  by introducing an ideal plane of symmetry AB, hereafter referred to as PS, that 

separates the flow configuration into two sectors). 

At one end of PS two opposite azimuthal currents originate, and at the other end of PS they vanish. 

Assuming that at a given instant t=0 the starting point of such counterpropagating flows is the point 

A on the left side, two initially very close parcels of fluid located there at =+ and =-, 

respectively, (see Fig. 8a) will move towards the right side (point B) as t increases, one in a 

clockwise direction (top semi-circumference in Fig. 8a) and the other anticlockwise (bottom semi-

circumference in Fig. 8a). In particular, both parcels will move with identical and constant velocity 

and after a duration of one half of the vibration frequency [t = 1/(2f )] they reunite at the opposite 

side of point A (point B).  

At time t = 1/f , however, as the time-varying acceleration induced by vibrations changes sign, the 

same process will be repeated with two parcels initially located at =0- and =+, respectively, 

moving towards the left side in a clockwise direction along bottom semi-circumference and in the 

anticlockwise direction along  the top semi-circumference. 
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a) b) 

 
Figure 9: Snapshots of velocity field in the meridian plane xz (=0) at two instants during the 
period  of oscillation (case A): a) t =t0, b) t =t0+/2 (=2/). 

 

As a natural consequence of such a mechanism, the instantaneous return flow will tend to be 

aligned with the AB direction (i.e. with the direction of imposed vibrations) and the overall flow 

will display a mirror symmetry with respect to this direction in any section perpendicular to PS  

(whereas it will appear strongly asymmetric in any section parallel to the x axis, Fig. 9). 

 

2. Particle Structures   

 

As shown in Fig. 10, after a relatively long transient time, well-defined particle structures are 

formed in the cylinder. Particles are no longer uniformly spaced in the liquid, rather they tend to 

accumulate on spatially extended surfaces located in proximity to the lateral sidewall.  

Most surprisingly, although such structures tend to retain the mirror symmetry with respect to the 

plane AB (the x axis, i.e. the direction of applied vibrations), and to reflect the typical topology of 

flow induced by vibrations (with fluid moving alternatively back and forth along the sidewall 

between points A and B), some regions completely depleted of particles appear periodically in the 

cylinder. Such zones are separated from regions in which solid particles are more or less uniformly 

dispersed by the aforementioned spatially extended surfaces along which particles undergo 

preferential accumulation. 

The subsequent evolution consists essentially of a rhythmic left-right displacement of the overall 

pattern and related characteristic independent loops visible in cross sections, which means that the 

system response to the imposed vibration is synchronous (or harmonic) (particles and velocity fields 

oscillating at the same frequency of the imposed sinusoidal forcing).  
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a) 

b) 

c) 
 
Figure 10: 3D snapshots of particle aggregates (case A): a) t =t0, b) t=t0+/4, c) t=t0+/2 (t0=1.4x10-

1, =2/).  
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In other words, once the particle-dense surfaces are formed, a further increase of time produces no 

variation in the morphological and topological properties of the pattern. Under the effect of 

vibrations the pattern oscillates back and forth along the direction of vibrations essentially as a 

whole (compare, e.g., Figs 10a and 10c, although the overall pattern is shifted to the right in Fig. 

10a and to the left in Fig. 10c, the characteristic size of the two circuits and their distance remain 

constant) at the vibration frequency as experienced by an observer in the laboratory (fixed) 

reference frame.  

An interesting behavior, deserving some additional discussion is evident along the line AB (see 

Figure 10, right part). A dark region (particle-dense spot) where particles accumulate is visible near 

the symmetry axis in the right part of Fig. 10a and 10c (no dark region is visible in Fig. 10b).  

This process can be explained by resorting to an analogy with similar pluming phenomena in 

thermal convection. Just as in classical thermal-plume formation mechanisms, the heated fluid rises 

due to buoyancy along a vertical line, producing a cap on top as a result of the drag exerted on it by 

the overlying fluid (the result in the temperature map is something that looks like a “mushroom”), 

here the strong alternating flow along the line AB, produces periodically a “plume of particles” 

moving from left to right or in the opposite direction. The concentration of particles in the “plume 

cap” is due essentially to the inertia that tends to slow down their motion with respect to the carrier 

liquid. In line with such an analogy, this “plume” effect disappears when the fluid velocity along 

AB is weakened (Fig. 10b). 

 

B. Non isothermal sidewall and adiabatic bases 

 

1. The Thermofluid-dynamic Field   

 

Figure 11 shows that the flow structure changes completely when the adiabatic lateral boundary is 

replaced by a non-isothermal sidewall (with a resulting temperature gradient along the y direction 

and perpendicular accelerations, i.e. vibrations aligned with the z axis). 

Given the relatively small value of the Gershuni number, the temperature distribution is still 

approximately linear inside the cylindrical enclosure (Fig. 11, left). The convective rolls with axis 

parallel to z, alternating their sense of rotation as time passes that we have seen in Sect. IIIA, 

however, are no longer a feature of the flow. Rather (Fig. 11, right, to be compared with Fig. 9), it 

displays a single main roll with axis parallel to x, changing cyclically its sense of rotation (from the 

clockwise sense to the anticlockwise one for increasing values of t). Such a main roll is produced 

essentially by the interplay between the temperature distribution and the buoyancy effect originating 

from the vibration-induced acceleration. More precisely, vibration-induced buoyancy and the 

imposed temperature gradient alternatively cooperate to produce a clockwise or anticlockwise 

convective cell over a cycle of the modulation. In that part of the cycle where the acceleration is 

directed along the positive x axis direction, the resulting convective cell will be anticlockwise 

oriented, vice versa (clockwise oriented roll when g(t) changes its sign). The concept of mental 
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divisibility of the flow configuration in two mirror regions is still applicable, but, obviously, in this 

case the ideal plane of symmetry coincides with the xz plane.  

 
2. Particle Structures 

 

As shown in Fig. 12, after a relatively long transient time, well-defined particle patterns are formed 

in the cylinder. Particles are no longer uniformly spaced in the liquid, and as in the case treated in 

Sect. IIIA, they tend to accumulate on spatially extended surfaces.  

Most surprisingly, however, the volume percentage occupied by such surfaces is relatively small in 

comparison to the companion case of Sect. IIIA. Two distinct tubular structures can be recognized 

in Fig. 12 very similar to those that would be obtained in the case of a cubical cavity [12]. Their 

overall radial extension is approximately equal to the diameter of the cylindrical enclosure and their 

orientation is parallel to the direction of imposed vibrations (the x axis). The two surfaces, however 

are well separated (their axial distance is approximately 40% of the cylinder height). Both tubular 

structures have an elliptic-shaped section (obtained by intersection with the yz plane). The 

characteristic sizes of their elliptic section e1 and e2  are only 12% and 26% of the cylinder axial 

extension, which may be regarded as a clear distinguishing mark with respect to the situation 

considered in Sect. IIIA (obviously, another clear difference is given by the shape of the section per 

se, as the section shape of the tubular structures shown in Fig. 10, was more similar to an orange 

slice than to an ellipse). 

          a) 

          b) 
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          c) 

          d) 
 

Figure 11: Snapshots of temperature distribution (left) and velocity field (right) in the meridian 
plane yz (=/2) at four instants evenly space in time during the period  of oscillation (case B, 
contour legend: level 1T=-0.45, level 20 T=0.45, level0.05): a) t =t0, b) t =t0+ /4, c) t =t0+ 
/4, d) t =t0+3 /4  (=2/). 

 

 
 

Figure 12: 3D snapshots of particle aggregates (case B, t=5.6x10-1). 
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a) b)  

c) d) 

e) f) 
 
Figure 13: Lateral view (from the x axis perspective) of particle aggregates as a function of time 
(case B): a) t=2.7x10-2, b) t=9.5x10-2, c) t=1.6x10-1, d) t=1.9x10-1, e) t=2.24x10-1, f) t=2.56x10-1.   

 

 

To fully understand the mechanism at work in this case (and appreciate the related theoretical 

implications), however, we have to examine in detail the spatio-temporal interplay established 

between buoyancy-induced flow and particle aggregates.  
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It is indeed the mechanism produced by the instantaneous (oscillating in time) flow (Fig. 11, right) 

in combination with vibration-induced particle time-displacements, whose nonlinear effects on 

particles accumulate over time, which leads to the observed particulate pattern. This is clearly 

illustrated in Fig. 13, which shows the stages of evolution of the considered system from the initial 

condition with particles uniformly distributed in the fluid up to the emergence of the final pattern 

with tubular structures aligned with the x axis. 

At the beginning (Fig. 13a) particle close to the walls tend to be accumulated owing to edge effects 

into two separate surfaces extended along the direction perpendicular to the imposed vibrations. In 

practice, this is due to the fact that when a group of particles moving under the effect of the 

vibration-induced periodic force (along z) comes in proximity to one of the two cylinder bases, 

particles tend all to be accumulated along the boundary direction owing to the well-known 

impenetrability property of solid walls. This is reflected in the formation of an apparently marked 

(particle-dense) line in the lateral view shown in Fig. 13. 

When the periodic force changes its sign and particles are moved in the opposite direction, the 

above process results in the appearance of a particle-dense line separating the region containing 

particles from the pure liquid (particle-depleted region).  

One must keep in mind, however, that, as illustrated in Sect. IIIB1, the influence of vibrations is not 

limited to the periodic force exerted on particles along the z direction. They also produce flow of 

thermovibrational nature (Fig. 11) that can transport particles. This is essentially the reason why the 

abovementioned particle-dense surfaces produced by the interaction with solid ends tend to be 

stretched and folded as time passes. 

The mechanism of pattern formation consists basically of a progressive translation away from the 

walls of such two apparent marked lines and ensuing folding of their part located in the cold region 

of the plane towards the interior (Fig. 13b). Such a folding is due essentially to the instantaneous 

motion of fluid shown in Fig. 11, which is alternatively accelerated from the hot to the cold side 

(due to buoyancy) along the top or bottom wall (depending on the instantaneous direction of 

acceleration) and then released in the cold region of the cylindrical enclosure. This process is 

responsible for the formation in the initial stages of evolution of a horizontal amphora-like shape as 

seen in the yz plane (the distribution of particles results in a shape that bulges out above y=0 and 

necks in below it).  

As time increases, the progressive folding of the lines delimiting the region with particles produces 

two rounded patches “protruding” from the main particle region towards the cold side.  

Figure 13c and 13d show that, as time increases, the extension of the two small areas hanging out 

from the main particle region becomes increasingly elongated (along the y direction) and contracts 

until a neck is formed for each of them (Fig. 13e). As time is further increased, the size of such a 

neck shrinks spontaneously and finally the protuberant regions detach from the (mother) particle 

region (Fig. 13f) forming two independent loops (tubular structures).  

Therefore, the following main stages of evolution can be identified in the process leading to the 

formation of the pattern: Stage I - the reason for the formation of a region where particles tend to 
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concentrate is due to the interaction of particles with boundaries and the well-known 

impenetrability property of solid walls; Stage II - the changes in the shape of the boundary 

separating the region with particles from the particle-depleted space are due to the convective 

particle transport produced by the instantaneous flow of thermovibrational nature; such changes 

lead to the formation of two elongated particle regions protruding in the particle-depleted space; 

Stage III - this begins when, owing to convective effects, the axial extension of the protuberant 

regions becomes very small at a certain location along y; for a further increase in time, the size of 

the neck decreases rapidly to zero forming two well-defined tubular surfaces visible in Fig. 12 

(whose intersection with the yz plane has approximately an elliptic shape). 

The recognizable shapes formed by particles then tend to be stable in time. Indeed, the subsequent 

evolution consists essentially of a further depletion of the mother particle region with ensuing 

accumulation of particles in the two closed loops and a rhythmic (synchronous) top-bottom 

displacement of the overall pattern along the z direction. As in the companion case considered in 

Sect. IIIA, once the two particle circuits are formed, a further increase of time, produces no 

variation in the morphological and topological properties of the pattern, which undergoes rhythmic 

displacement along the z direction as an apparently solid unit (although, at the risk of repetition, we 

should recall again that the property of all particle pertaining to the pattern of moving as they would 

pertain to solid lattice is just an illusion). 

 

C. Inclined temperature gradient 

 

For the sake of completeness, in this section we finally discuss the case with inclined temperature 

gradient, which may be regarded as a hybrid configuration bridging the gap between the two limit 

conditions presented in the earlier sections.  

 

1. The Thermofluid-dynamic Field   

 

Given the relatively small value of the Gershuni number, the temperature distribution is still 

approximately linear inside the cylindrical enclosure (it is characterized by isotherms inclined with 

respect to the axial direction and uniformly distributed in space, Fig. 14, left). The velocity field, 

however, displays a structure much more complex than those obtained for the other considered 

heating conditions. This time, clearly distinguishable convective cells can be observed in both the 

xz plane and in sections perpendicular to the cylinder axis. In the latter case, in particular, four 

distinct counter-rotating cells can be identified (Figs. 15 and 16). Like the case considered in Sect. 

IIIA, such cells are not steady in time and change sense of rotation periodically.  
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          a) 

          b) 

          c) 

          d) 
Figure 14: Snapshots of temperature distribution (left) and velocity field (right) in the meridian 
plane xz (=) at four instants evenly space in time during the period  of oscillation (case C, 
contour legend: level 1T=-0.45, level 20 T=0.45, level0.05): a) t =t0, b) t =t0+ /4, c) t =t0+ 
/4, d) t =t0+3 /4  (=2/). 
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a) b) 
 
Figure 15: Snapshots of velocity field in the cross section z=0 at two instants during the period  of 
oscillation (case C): a) t =t0, b) t =t0+/2 (=2/). 
 

 
 
 
Figure 16: Sequence (sketch) showing the evolution of vibrations-induced convective cells in the 
generic cross section z=const during one period of oscillation for case C.  

 

A more precise idea of the threedimensional complexity of the flow in this case can be obtained by 

taking a look at the snapshots of azimuthal velocity isosurfaces shown in Figure 17. 
 

a)  b) 
 
Figure 17: Snapshots of 3D isosurfaces of azimuthal velocity component w (w = ±1) for the same 
conditions considered in Figure 12: a) t =t0, b) t =t0+ /4. 
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2. Particle Structures   
 

Figure 18 illustrates that despite the increased complexity characterizing the oscillatory velocity 

field produced by inclined vibrations, the resulting particle accumulation structures are rather 

similar to those seen for the case of axial temperature gradient. Interestingly, however, as evident in 

Fig. 18a (which shows a lateral view of the system) the extension along the axial direction of the 

region affected by the presence of particles (in such a figure the white area between the external 

system boundary and the internal darker region indicates the zone that has been completely depleted 

of particles) is reduced with respect to Fig. 10. This indicates that the inclination of the imposed 

temperature gradient can be used to produce an axial compression of the pattern formed by the 

dispersed solid matter.  

 
Figure 18: Snapshot of particle aggregates (lateral and top views, case C). 

 

Moreover, accurate inspection of the lateral view reveals that some internal particle structures can 

be identified. Such structures, which were not present in Figure 10 and look like the curved 

branches of a tree, should be ascribed to the joint action exerted on the system by the axial 

component of imposed vibrations and the component of the imposed temperature gradient along the 

x axis (via the mechanism illustrated in Sect. IIIB2, which will tend to produce closed circuits like 

those seen in Fig. 13).   
 
 

IV. Discussion 

 

As highlighted in Sect. II, hydrodynamic interactions (assumed to be absent under the assumption 

of a dilute solid-liquid system) play no role in the present dynamics. The cause-and-effect 

relationships driving particle clustering must be therefore located elsewhere.  

As discussed to a certain extent in the earlier section, for the considered phenomena vibrations will 

be exerting their influence on particles via different separate mechanisms, one being the “direct 

effect” of the resulting accelerations on the particles due to their different density with respect to the 

surrounding fluid (which would be still present in an isothermal system) and the other being related 
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to the way by which the flow of thermovibrational nature tends to transport particles according to 

their size and drag. The latter, however, can be further split into a “mean” effect (i.e. how the time-

averaged velocity field can influence the transports of particles) and an “instantaneous” effect 
related to the periodic velocity VVV '  oscillating in time at the same acceleration frequency  

of the imposed inertial disturbance. 

In order to discern clearly the contribution brought to the pattern by each of the above mechanisms, 

this section is finally devoted to an examination of the distinct behaviors which are produced when 

the influence of such effects is explored “separately”. This approach is generally known as 

“modeling hierarchy” and consists of a diversity of model types in which various processes are 

switched on and off and the results are carefully examined.   

More precisely, we compare the results of the computations obtained for the following different 

conditions: 
 

a) Particles transported by the effective velocity field and subjected to the vibrational body 

force (full system); 

b) Particles transported by the velocity field obtained subtracting the mean flow from the 

effective velocity distribution (particles still subjected to the vibrational body force); 

c) Particles transported by the mean flow only (still subjected to the vibrational body force); 

d) Particle subjected to the oscillatory body force in an isothermal system; 

e) Particles transported by the mean flow only neglecting the oscillatory body force; 

f) Particles transported by the effective (total) flow neglecting the oscillatory body force; 

 

We focus again on the same case already used for code validation, namely the cylindrical enclosure 

with non-isothermal sidewall and adiabatic ends with vibrations along the z axis, for which we 

could measure precisely the size of the particle structures in the yz plane (Fig. 12 and Table II). 

Fig. 19a and 19b immediately reveal that, apart from a very small displacement towards left of the 

resulting particle loops in Fig. 19b (with respect to those in Fig. 19a), subtracting the mean field to 

the total velocity field does not change significantly the pattern (neither form a quantitative, nor 

form a qualitative point of view).     

Vice versa, the lack of recognizable structures in Figs. 19c clearly indicates that the oscillatory 
component of the velocity field VVV '  is an essential ingredient without which particles do 

not undergo significant clustering. Indeed, although some distortion of the initially uniform 

distribution of particles can be seen (in agreement with the expected effect of the quadrupolar 

velocity field shown in Fig. 4), particles do not form dense structures. Among other things, such an 

argument is further supported by the results shown in Fig. 19d, where in the complete absence of 

convective flow, the pattern attains a trivial configuration (the particles retain a more or less even 
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distribution; the compression of the pattern along the vertical direction is due to the body force that 

periodically displays it up and down).    

a) b) 

c) d) 

e) f) 
 
Figure 19: Snapshot of particle aggregates (plane yz) in the case B (t=5.6x10-1) for different 
conditions: a) particles transported by the effective velocity field and subjected to the vibrational 
body force (full system); b) particles transported by the velocity field obtained subtracting the mean 
flow from the effective velocity distribution and subjected to the vibrational body force; c) particles 
transported by the mean flow only and subjected to the vibrational body force; d) particles 
subjected to vibrations in an isothermal system; e) particles transported by the mean flow only 
neglecting the oscillatory vibrational body force; f) particles transported by the effective (total) 
oscillatory flow neglecting the oscillatory vibrational body force.  
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Figures 19e and 19f finally show that when the oscillatory thermovibrational body force is 

neglected, neither the mean flow field, nor the total field can produce particle structures (the effect 

of the mean velocity being limited to a weak distortion of the initial uniform particle distribution 

used as initial condition). 

All these arguments taken together provide additional evidence to the conclusion that the 

coexistence of an oscillatory body force and a velocity field oscillating in time should be regarded 

as a necessary prerequisite for the emergence of recognizable particle agglomerates for the 

conditions considered here. By contrast, one may consider the role played by the time-averaged 

flow almost negligible in terms of particle clustering phenomena. 

 

V. Conclusion 

 

Although, in a rather unexpected way,  the “multiplicity” of the resulting recognizable accumulation 

structures (particle-dense surfaces) is “two” for all cases considered (two more or less regular 

tubular structures are visible in Figs. 10, 12 and 18, regardless of whether the temperature gradient 

is parallel, perpendicular or inclined with respect to the symmetry axis of the cylindrical enclosure), 

their spatial extension (percentage of physical volume occupied), “separation” (spatial distance) 

change significantly. As shown by the numerical results, the intriguing diversity of particle 

agglomerates when the direction of the imposed temperature gradient is changed (while maintaining 

vibrations perpendicular to it) results from the different role/importance played by (curved or 

straight) boundaries in constraining particles and, from the different topology of the resulting (large-

scale) oscillatory thermovibrational flow (whereas the time-averaged part of the flow does not 

provide a substantial contribution in terms of particle clustering dynamics).  

In view of the generality of the mechanisms involved, we expect the importance of this category of 

structure-forming processes to open the door to new strategies for the separation of phases in typical 

industrial applications involving cylindrical cavities or systems. There is a variety of fabrication 

processes (in which distinct components have to be fractionated) which may be considered as 

relevant examples of situations where the concepts elaborated in this work may have very 

interesting applications.  

Although some general (qualitative) trends about the dependence of the present phenomena on the 

vibration frequency and amplitude (which in the present study were fixed) may be elaborated “a 

priori” on the basis of earlier analyses dealing with the cubic cavity [12], future work shall be 

devoted to parametric quantitative evaluation of the influence of the problem non-dimensional 

parameters on the formation time and the size and position in space of the new particle structures 

revealed here. 
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