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Abstract. In this work, geometrically nonlinear vibrations of fully clamped rectangular 

plates are used to study the sensitivity of some nonlinear vibration response parameters 

to the presence of damage. The geometrically nonlinear version of the Mindlin plate 

theory is used to model the plate behaviour. Damage is represented as a stiffness 

reduction in a small area of the plate. The plate is subjected to harmonic loading with a 

frequency of excitation close to the first natural frequency leading to large amplitude 

vibrations. The plate vibration response is obtained by a pseudo-load mode superposition 

method. The main results are focussed on establishing the influence of damage on the 

vibration response of the plate and the change in the time-history diagrams and the 

Poincaré maps caused by the damage. Finally, a criterion and a damage index for 
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detecting the presence and the location of the damage is proposed. The criterion is based 

on analyzing the points in the Poincaré sections of the damaged and healthy plate. 

Numerical results for large amplitude vibrations of damaged and healthy rectangular and 

square plates are presented and the proposed damage index for the considered cases is 

calculated. The criterion demonstrates quite good abilities to detect and localise damage.  
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1.  INTRODUCTION 

Vibration-based structural health monitoring (VSHM) methods are based on the fact that 

any changes introduced in a structure result in changes in its dynamic behaviour. Thus 

introduction of even a small defect will change the physical characteristics of a structure 

(its mass, stiffness, damping characteristics), which in turn will affect its vibration 

response and change its dynamic characteristics. VSHM methods are especially 

attractive because they are global monitoring methods in the sense that no a priori 

information for the location of the damage is needed and/or immediate access to the 

damaged part is not required. These features are especially important when the objects of 

monitoring are large and/or complex structures and when some parts of these structures 

are either inaccessible or very difficult for taking measurements. 

 

Most of the previous efforts of researchers in a big part of the literature on VSHM are 

directed towards modal-based methods [1-7]. One of the main problems with these 

methods comes from the fact that in general damage is a local phenomenon and does not 

necessarily affect the global lower frequency response of the structure, which is 

normally measured during vibration tests. This is the reason why many modal-based 

methods suffer lack of sensitivity to damage when applied to different structures [8, 9].  

Another problem with a number of VSHM methods is that they rely on a certain model 

of the structure. As the theoretical model itself can only approximate the actual 

behaviour of the vibrating structure, it will introduce computational errors [3, 4]. If some 

nonlinearities or environmental conditions are not taken into account in the model, the 

methods might give a false alarm due to a discrepancy between the measured and the 

modelled response. 
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To address some of the above mentioned problems a new paradigm in vibration-based 

monitoring has been emerging recently - the employment of the measured time series 

response of the structure for VSHM purposes. Techniques, which apply pure time series 

analysis will not necessarily suffer the above limitations and may provide a broader 

utility due to their generic approach. Most of the studies in this field are devoted to the 

problem of features extraction from the structural vibration response, which can be 

indicative for the presence of damage and its location [9, 13, 14]. In [8] the authors use 

the beating phenomenon for the damage detection (DD) purposes. In [9, 13] the authors 

introduce two new attractor-based metrics as damage sensitive features. The results are 

promising but the procedure has certain requirements for the excitation and for the 

experimental equipment. Other non-modal-based methods suggest the use of statistical 

approaches [14-16], neural networks [17], wavelet techniques [18, 19] and other generic 

techniques [20]. 

 

Time series analysis, which draws most of its applications from statistical analysis and 

nonlinear dynamics, can provide a number of features and techniques that may hold 

significant promise for VSHM. Although the approach seems to hold a lot of potential, 

there is limited research addressing VSHM methods based on nonlinear time series 

analysis [10-13]. 

 

In this work phase-space variables are used for damage detection purposes. The 

geometrically nonlinear theory of vibrations of a rectangular plate is used to study the 

sensitivity of some parameters of the nonlinear vibration response to the presence of 

damage. The plates are subjected to a harmonic loading leading to large amplitude 

vibrations and the influence of the damage on the time-history diagrams of the plate, as 



 5 

well as on the geometry of the phase-space is studied. Finally, a new criterion based on 

the Poincaré map of the plate response is proposed. 

 

2. BASIC EQUATIONS 

The object of the investigation is a rectangular plate with sides a and b and thickness  h, 

subjected to a dynamic loading p(x,y,t) perpendicular to the plate (Fig. 1 a). The 

presence of a defect can be modelled as a reduction of the plate thickness or a stiffness 

reduction and therefore a variation of the flexural rigidity in the governing equations is 

used. The basic equations of the plate motion are described below. 

 

2.1 Geometrical relationships 

The strain and curvature-displacements relationships associated with the mid-plane of 

the plate for large displacements and shear can be expressed as: 
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and the strain vector is given by: 

   (2) 

where ( )f z  is a function describing the distribution of the shear strain along the plate 

thickness, u(x,y,t) and v(x,y,t) are the in-plane displacements, ( ), ,w x y t is the transverse 

displacement and ( ) ( ), , , , ,x yx y t x y tψ ψ  are the angles of the rotation of the normal of 

the cross section to the plate mid-plane (see Fig. 1 b.). 

 

2.2 Constitutive equations 
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Assuming that the material of the plate is linear elastic and isotropic the relations for the 

generalized stress and strain components are given by: 
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= + = + =  
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 (3 a-h) 

 

 (4 a,b) 

where E is the Young modulus, ν  is the Poison ratio, k
2 

is a shear correction factor 

which is assumed equal to 5/6 throughout the paper [25]. In Eqns. (3) Nx, Ny and Nxy are 

the stress resultants in the mid-plane of the plate, Mx, My and Mxy are the stress couples 

and Qx and Qy are the transverse shear stress resultants.  

 

2.3 Equations of motion 

The equilibrium equations may be deduced by considering the translational equilibrium 

in the x, y and z directions and the rotational equilibrium about x and y which are as 

follows: 
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Here and throughout in the paper dots over variables represents the derivative with 

respect to the time, c1 and c2 denote the damping coefficients, and ρ is the density of the 

plate material.  

 

2.4. Boundary and initial conditions 

In the present work fully clamped plates, i.e. plates for which all their four edges are 

clamped and in-plane fixed, are considered. This means that all displacements u, v and w 

and angular rotations yandxψ ψ  are zero along the boundaries.  

The initial conditions are accepted in the following general form: 

( ) ( )0 00 0w x y w x y w x y w x y= =, , ( , ), , , ( , ),� �       

( ) ( ) [ ] [ ]0 0
0 0 0 0x x y yx y x y x y x y x a y bψ ψ ψ ψ= = ∈ ∈, , ( , ), , , ( , , ), , , ,� �  (6a-d) 

 

3. SOLUTION OF THE PROBLEM 

 

3.1 Reorganizing the equations of the plate motion 

Making the widely accepted assumption that mid-plane inertia effects are negligible , i.e. 

0x yhu huρ ρ= =�� ��  and moving the nonlinear terms to the right hand side, the equations of 

motion (5) are written in the following form: 
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and 3 ,LG  denotes the component of the vector 3(0,0, )L LGG  which is called “nonlinear 

force vector due to finite displacements”( see [21, 22].). 3
LG   has the form: 

( )
2 2 2

3

2 2
2L x y xy

w w w
G x y t N N N

x yx x

 ∂ ∂ ∂
= − + +  ∂ ∂∂ ∂ 

, ,   (9) 

 

3.2. Numerical approach  

 

Assuming  and u v
G G   are known functions, Eqns. (7 a-b) form a linear system of PDEs 

which can be solved numerically. The solution is obtained using a finite a difference 

method by applying a central differences formula (see Appendix).  

The left hand sides of Eqns. (7 c-e) contain only linear terms and therefore the mode 

superposition method can be used for their solution. 
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Thus, the generalized displacements vector { }
T

x y wαψ αψ=U , ,  (α=h2/12) is expanded 

as a sum of the product of the vectors of the pseudo-normal modes Un and the time 

dependent functions qn(t) as follows: 

U=
1

fN

n n

n

x y q t
=
∑U ( , ) ( ).  (10) 

Substituting Eqn. (10) into Eqns. (7 c-e), multiplying by Um(x,y), integrating the product 

over the plate surface, invoking the orthogonallity condition, and assuming  

“proportional damping” in the sense ( )2 2 2
2 2 1 2xn yn n n nc c c w dxdyψ ψ ξ ω+ + =∫∫ , the 

equations for qn(t) will be “uncoupled” in the form: 

22n n n n n n nq t q q t F tξ ω ω+ + =( ) ( ) ( ),�� �  (11) 

where ωn are the natural frequencies of the linear elastic (undamped) Mindlin plate, nξ  

are the modal damping parameters and 

T
n n LF t x y t x y t dxdy= +∫∫( ) U [P( , , ) G ( , , )] ,   (12a-b) 

0 0 T
r t p= −P( , ) ( , , ) .  

The initial conditions defined by Eqns (6) are transformed also in terms of (0)nq  and 

(0)nq� : 

0 0(0) , (0) ,n n n nq q q q= =� �  (13 a-d) 

( ) ( )0 0 0 0 0 0 0 0
n n x xn y yn n n x xn y ynq w w dxdy q w w dxdyαψ ψ αψ ψ αψ ψ αψ ψ= + + = + +∫∫ ∫∫,  � � � �� � �   

Using the methodology developed by Kukreti and Issa [21] the pseudo-load vector 

{P+G} is interpolated by a quadratic time dependent polynomial, i.e. 

2( , , ) ( , , ) ( , ) ( , ) ( , )  ,    0 tx y x y x y x y x y Lτ τ τ τ τ+ = + + ≤ ≤P G A B C  (14) 
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Where 1 -   t i iL t t+=  represents the time increment, and τ  which is defined as  - it tτ = ,  

identifies a new time origin for each time increment.  

Denoting 

0 1 20 t tx y x y x y x y mL x y x y L= = =P ( , ) P( , , ), P ( , ) P( , , ), P ( , ) P( , , ),  

0 1

2

0

0 1 0 0

t

t

x y x y x y x y mL

x y x y L m x a y b

= =

= < < < < < <

G ( , ) G( , , ),G ( , ) G( , , ),

G ( , ) G( , , ) , ,
  (15) 

the expressions for the constants  A, B  and  C  are derived in terms of Pi and Gi (i = 1 

to 3). The general solution of Eqn. (14) is given by: 

0 0
1 2 1 2 3( )  n n n n n n n n n n nq E q E q F a F b F cτ = + + + +�  (16) 

where E1n, E2n, F1n, F2n, F3n denote complicated mathematical expressions 

containing , andn nω ξ τ  (see  [22] ) and  

T
n n na dxdy= ∫∫U A  , T T

n n n n n nb dxdy c dxdy= =∫∫ ∫∫U B , U C  (17) 

The iteration procedure applied to solve the above equations (11) is identical to the ones 

for circular plates and beams given in [22, 23]. This is why it is summarised very briefly 

here. 

 

We first solve the eigen-value problem for the plate described by the small deflection 

Mindlin plate theory which gives the frequencies of free vibration, the normal modes of 

vibration Un, and the necessary derivatives. Then the initial values 0
nq  and 0

nq�  are 

computed according to Eqns. (13).  

At each time-step [ti ,ti+1] an iteration procedure is applied. It includes solving the small 

deflection plate theory equations and then using the obtained values of w and its 

derivatives to compute  Gu and Gv , solve the system of algebraic equations (A1,A2) for 

u and v, and then form the nonlinear force vector GL, and solve the system of ODE (11) 

again. At the next time step the values of generalized displacement and velocity vectors 
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andU U� at the end of the previous time interval are used as initial conditions. The 

iterative procedure is repeated until the convergence criterion is fulfilled.  

 

The integrals in Eqns. (12, 13 and 17) are evaluated by numerical quadrature following 

the Simpson rule. 

 

4. Damage identification technique 

In a lot of cases small damage in structures doesn’t influence the static response or the 

small amplitude vibration response of the structure. However, its influence can be 

observed when the structure is subjected to large dynamic loads, leading to large 

amplitude vibrations. In this case even small changes in the structure (like cracks and 

other local damage scenarios) can have a considerable effect on the structural response 

in the time domain, which in turn can give an indication of the presence of damage. 

Damage which induces very small changes in the natural frequencies and the mode 

shapes may result in phase shifts between the vibration response of the healthy structure 

and the damaged structure in the time domain. In many applications vibrating plates are 

subjected to dynamic loadings leading to large amplitude vibrations. In such cases the 

small deflection plate theory cannot provide adequate simulation of the plate vibration 

response and therefore the large deflection plate theory should be applied, which takes 

into account the geometrical nonlinearities present in the system. On the other hand, 

large amplitude vibrations can increase substantially the influence of small defects 

(which have very small or nearly no influence on the plate response in the case of small 

deflections) on the dynamic behaviour of the plate and thus make them easily 

identifiable. 
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There are a lot of techniques to treat nonlinear structural response in the time domain. As 

mentioned above, the state-space representation of the structural vibration response is a 

suitable and powerful tool for studying the dynamic behaviour of a structure. A standard 

technique for dealing with phase space ( ), ,w w t� of periodically driven oscillators is to 

study the projection of ( ),w w�  at moments in time t, where t is a multiple of the period 

T=2π/ω. Here ω can be the frequency of the excitation of the mechanical system, an 

eigen frequency of the structure, or its multiple, and T is a period of the forcing function, 

an eigen period of the system, or its multiple. The result of inspecting the phase 

projection ( ),w w�  only at specific times t=kT is a sequence of dots, representing the so-

called Poincaré map. The steady-state converging trajectories, which represent the 

attractor, are usually formed in the phase space and in many cases of nonlinear systems 

they are very sensitive to any changes in the system. 

 

The idea of the approach presented here is based on the following considerations: 

1. A Poincaré map can be interpreted as a discrete representation of the 

dynamic system in a state space which is one dimension smaller than the 

original continuous space of the dynamic system. Since it preserves many 

properties of periodic and quasiperiodic orbits of the original system and 

has a lower dimension, it is often used for analyzing the original system. 

2. The Poincaré maps contain data for the displacements and the velocities of 

the structure in a compact form and since these two parameters are 

expected to be sensitive to damage these diagrams can be used to detect 

damage. When the damage is large and the plate undergoes substantial 

nonlinear vibrations, this leads to changes in the attractor of the vibrating 

system in the phase space and then the application for damage assessment 
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purposes becomes obvious. Even when the damage is small, and the 

responses of the damaged and the healthy structure are close to each other, 

the points from the Poincaré map are easier to use for comparison and 

identification purposes because the number of these points is much smaller 

than the enormous number of points in the time-history diagrams.  

 

According to the above considerations the following damage index can be introduced for 

the i
-th

  node: 

u d
d i i
i u

i

S S
I

S

−
= ,     
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2 2
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S w w w w

−

+ +
=

= − + −∑ � �    

where, i=1,2…Nnodes, Nnode  is the number of nodes,  Np  is the number of points in the 

Poincaré map and ( , ) and ( , )u u d d
ij ij ij ijw w w w� �  denotes the j 

th
 point on the Poincaré maps of the 

undamaged and the damaged states, respectively. 

 

A small (close to 0) damage index will indicate no damage, while a big damage index 

will indicate the presence of a fault at the corresponding location. The above damage 

index depends on the location of the point on the plate, and consequently it is a function 

of the plate coordinates x and y. One can expect that the maxima of the surface 

( , )d
d dI x y  (18a) will represent the location of the damage, i.e. { }max ( , ) maxd d

d d i
i

I x y I= . 

It is easy to notice that  and u d
i iS S (18 b,c) represent the lengths of the lines formed by 

connecting the dots on the Poincaré maps for the damaged and the non-damaged plate 
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for i-
th

 node. Therefore the damage index is defined as the relative difference between 

these two lengths. The logical expectations are that:  

1) Since the fault influences the vibration response of the plate it will introduce 

changes in the Poincaré map. The differences between the Poincaré maps of the 

healthy and damaged plates will be indicative of the presence of damage.  

2) At the nodes close to the damaged area the introduced damage index  d
iI  (18 a) 

will be larger than the index for points which are far from the damaged zone. 

This can be used to localize the detected damage. 

 

5. THE CASE STUDY 

This study focuses on damage assessment in rectangular and square plates. The material 

characteristics of the plates are: Young modulus E = 7.10
10 

N/m
2
, Poison ratio ν=0.34, 

density ρ= 2778 kg/m
3
. The damping coefficient 1 2 2

12
c c

h
=  in Eqns ( 7 ) was chosen to 

be 0.00075 
3

N s

m
. The square plate has dimensions a=b=0.5 m and thickness h= 0.006 m. 

Two cases of damage were considered: - A) almost central damage- thickness 

reduction in a small area located in the central part of the plate slightly moved from the 

centre (one element up and one element left) (see Fig. 2); B) side damage- thickness 

reduction in a small area close to the left lower corner of the plate as shown in Fig. 2. A 

finite element model of the plate is shown in Fig. 2.  

 

The finite element discretization of the rectangular plate is shown in Fig. 3. Its 

dimensions are : a=10 m, b=2.5 m, h=0.05 m. Again two damage cases are considered: 

A) almost central damage and B) side damage. The damage is modelled as thickness 
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reduction. In both cases (rectangular and square plates) the thicknesses of the damaged 

areas are equal to half the thickness of the undamaged plate. 

The aim of the following numerical example performed is to test the suggested 

procedures to detect and localise damage in the plate. 

 

6. SOME RESULTS    

In this paragraph some result for the detection and the localisation of the defects 

described above in the square and the rectangular plates considered are discussed. 

First of all the sensitivity of the first ten natural frequencies of the plate was tested. Our 

results show that in these particular cases both defects introduce very small or nearly no 

changes in the first 10 natural frequencies of the plate. The relative differences between 

the frequencies of the intact and the damaged square and rectangular plates are shown in 

Figs. 4 and 5, respectively. Especially for the case B) the differences between the 

frequencies are very small and are in the range of the accuracy of its experimental 

determination. So in these particular cases there is obviously a need for an alternative 

method. 

Then, the forced response of the plates subjected to harmonic loading was considered. 

Cases when the frequency of excitation is close to one of the first natural frequencies of 

the system are interesting and important for this study of a nonlinear system because 

they often lead to complex phenomena like beating, quasi-periodic or chaotic vibrations 

[24]. In such regimes the vibrating systems are usually quite sensitive to even small 

changes introduced in their geometry and/or the physical properties including damage. 

These regimes of large amplitude vibrations are therefore expected to enhance the 

sensitivity of nonlinear vibrating structures to damage, even though the changes in the 

natural frequencies might be negligible. Accordingly the plates considered were 
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subjected to a harmonic loading uniformly distributed over the plate surface. Numerical 

experiments were carried out for different values of the excitation frequency.  

 

In the case of a square plate with a central defect (case A) the excitation frequency was 

chosen equal to ωe=1000 rad/s. In order to show the applicability of the methods for 

higher frequencies for the case B the excitation frequency was ωe=2000 rad/s. (The first 

two natural frequencies of healthy plate are ω1=1326.32 rad/s, ω2=2700.3 rad/s ) The 

amplitude of the harmonic loading was 6 N.  

 

Let us first have a look at the time histories of the plate response for the undamaged and 

the damaged cases. Figures 6 and 7 give parts of the time histories for the case of central 

defect and side defect compared to those for the non damaged plate. It can be observed 

that the applied load leads to large amplitude vibrations of the plate. Due to the fact that 

the excitation frequency is close to the first natural frequency of the plate a beating 

phenomenon occurs. It can be appreciated from Figures 6 and 7 that the time histories 

undergo changes with damage. As expected, the differences for case A central defect are 

bigger than the differences for case B side defect. It can be seen that close to the origin 

(t=0) the responses almost coincide with each other (especially for case B) but then the 

phase shifts and the differences between the responses increase.  

 

The next question is how to use these differences in the time responses of the non-

damaged and the damaged plate for the purposes of VSHM. Our approach suggests the 

use of Poincaré maps and the damage index d
iI  (equation 18 a) which is based on these 

maps to detect and localise the damage. To visualize the damage index and to set a 

threshold for detecting the damage we use the so-called contour plots. A contour plot is a 

graphical technique for representing a 3-dimensional surface by plotting constant z 
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slices, called contours, on a 2-dimensional plane. That is, for a given value of z, lines are 

drawn that connect the (x,y) coordinates that correspond to this particular value of  z.  

 

The influence of the damage on the Poincaré maps at the plate centre can be seen in 

Figures 8 and 9. As can be expected the influence of the central damage (case A) on the 

Poincaré maps of the plate is larger than the influence of the side defect (case B). The 

introduced damages do not change the type of the Poincaré section (circle) they only 

influence the length of the curves formed by the Poincaré dots. Then the damage index 

d
iI was calculated for the points from the Poincaré maps for all the nodes and its contour 

plots were obtained. Fig. 10 details the contour plots of d
iI  for case A defect for all the 

plate nodes. As can be seen from this plot case A damage can be detected and localised 

quite precisely.  

 

Fig. 11 presents analogous contour plots for the case of side damage (case B).  It can be 

observed that the plot identifies quite precisely the position of the defect in spite of the 

fact that the absolute values of the differences in the displacements and the velocities of 

the two responses at the nodes of the damaged area are small. The calculations for 

smaller values of damage (hdamaged/h = 0.66) still show very good prediction of the 

damage location (not shown here). 

 

Analogous results were obtained for the case of the rectangular plate. 

The time history diagram of the plate centre of a plate with a side defect is shown in Fig. 

12. The excitation frequency is 260 rad/s, which is only 7 % less then the first eigen 

frequency of the healthy plate. Again a strong beating can be observed in the responses 

of the healthy and damaged plates. The phase of the response of the damaged plate and 
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the difference between the responses increases with the time. In spite of the fact that the 

Poincaré maps at the plate centre (where the deflections and the velocity are the largest) 

are very close to each others (Fig. 13) the damage index corresponding to the damaged 

area has the biggest values, which gives the possibility to locate the damage. In Fig. 14 

the contour plot of d
iI  is compared to the FE model of the plate where the damaged area 

is coloured in white. It can be seen that the damage location is predicted very precisely. 

The same conclusion applies in the case of the rectangular plate with central damage 

(see Figs. 15 and 16). As in the case of the square plate the location of the damage is 

predicted very precisely and even the small non-symmetry of the damage location with 

respect to the plate centre can be seen on the contour map of d
iI . 

 

7. CONCLUSIONS 

A numerical approach for studying the geometrically nonlinear vibrations of rectangular 

plates with and without damage is developed in the paper. The computed time domain 

responses are used to analyse the dynamic behaviour of plates in the intact condition and 

of plates with defects. Based on these analyses a damage index and a method for damage 

detection and damage location have been proposed. The damage assessment method is 

based on the phase space representation of the time domain nonlinear response of the 

plate and uses the analysis of the Poincaré map of the response. The developed damage 

assessment procedure was applied for the test cases of a square and a rectangular 

aluminium plates with different defects modelled as areas with reduced thickness. It was 

demonstrated that damage can influence substantially the time domain response of the 

plate despite its very small influence on the plate natural frequencies. The suggested 

damage assessment method demonstrates quite good capability for detecting damage. 

The index suggested in Eqns. (18) is used to localise damage and it shows very good 
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performance. The potential, the sensitivity and the applicability of the developed method 

still have to be tested for real measurements and for more structures, defects and loading 

conditions.  
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APPENDIX. Finite difference scheme for solution of equations for mid-plane 

displacements.  

Applying the central difference formula the equations (7 a, b) are transformed into the 

following system of algebraic equation with respect to ui,j , vi,j  , i=1,2,…Nx, j=1,2,…Ny, 

(Nx and Ny are the numbers of nodes along the axis x and y , correspondingly.  
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Assuming Gu and Gv are known functions the linear system of algebraic equations is 

solved by using LSLRG routine of the Microsoft IMSL Libraries.  
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Figure 2 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 8.  . 
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Figure 9.   
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Figure 10.  
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Figure 11  
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Figure 13.  
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Figure 15.  
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FIGURE CAPTIONS 

Figure 1.  .  Plate geometry and coordinate system. a) Plate dimensions and loading, b) 

Mid-plane of the plate and the components of the generalized displacement vector. 

Figure 2. Square plate with central defect and side defect  

Figure 3.   Rectangular plate with central defect and side defect  

Figure 4.  Differences between the eigen frequencies of the damaged and undamaged 

square plate. Solid line – side defect; dashed line -  central defect 

Figure 5.  Differences between the frequencies of the damaged and undamaged 

rectangular plate in the case of central and side defects  

Figure 6.  Time histories of the plate centre in the case of central  defect  solid line –

undamaged plate; dashed line – damaged plate. Excitation frequency  ωe=1000 rad/s,  

p=6 N.  

Figure 7 Time histories of the plate centre of the square plate for the case of side defect. 

Solid line –undamaged plate; Dashed line – damaged plate. Excitation frequency  

ωe=2000 rad/s,  p=6 N.  

Figure 8. Poincaré map of the centre of the plate in the case of central damage.  

Figure 9.  Poincaré map of the centre of the plate in the case of side damage.  

Figure 10.  Contour map of damage index I
d 
for central damage.  

Figure 11.  Contour map of damage index I
d 
for square plate with side damage  

Figure 12  Time-history diagram for the plate centre of the rectangular plate in the case 

of  side defect. Harmonic loading with P=500 N, ωe=260 rad/s . Solid line – undamaged 

plate, Dotted line – Damaged plate. 
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Figure 13. Poincaré map for undamaged and damaged in the plate centre of a 

rectangular plate with a side defect. 

Figure 14. Contour map of damage index Id for rectangular plate with a side defect\ 

Figure 15 . Poincaré map for undamaged and damaged rectangular plate with a central 

defect. 

Figure 16. Contour map of damage index  Id  for rectangular plate with a central defect. 




