Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Vanadium microalloyed steel for thin slab casting and direct rolling

Li, Y. and Baker, T.N. and Mitchell, P.S. (2005) Vanadium microalloyed steel for thin slab casting and direct rolling. Materials Science Forum, 500-501. pp. 237-244.

[img]
Preview
Text (strathprints005783)
strathprints005783.pdf - Accepted Author Manuscript

Download (450kB) | Preview

Abstract

Vanadium microalloyed steels with high yield strength (»600 MPa), good toughness and ductility have been successfully produced in commercial thin slab casting plants employing direct rolling after casting. Because of the high solubility of VN and VC, most of the vanadium is likely to remain in solution during casting, equalisation and rolling. While some vanadium is precipitated in austenite as cuboids and pins the grain boundaries, a major fraction is available for dispersion strengthening of ferrite. Despite a coarse as-cast grain size, significant grain refinement can be achieved by repeated recrystallisation during hot rolling. Consequently, a fine and uniform ferrite grain structure is produced in the final strip. Increasing the V and N levels increases dispersion strengthening which occurs together with a finer ferrite grain size. The addition of titanium to a vanadium containing steel, decreases the yield strength due to the formation of V-Ti(N) particles in austenite during both casting and equalisation These large particles reduced the amount of V and N available for subsequent precipitation of fine (~5nm) V rich dispersion strengthening particles in ferrite.