Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Identification of functional connections in biological neural networks using dynamical Bayesian networks

Dong, Chaoyi and Yue, Hong (2016) Identification of functional connections in biological neural networks using dynamical Bayesian networks. IFAC-PapersOnLine. p. 1. ISSN 1474-6670

Text (Dong-Yue-IFACO2016-Identification-of-functional-connections-in-biological-neural-networks)
Dong_Yue_IFACO2016_Identification_of_functional_connections_in_biological_neural_networks.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (340kB) | Preview


Investigation of the underlying structural characteristics and network properties of biological networks is crucial to understanding the system-level regulatory mechanism of network behaviors. A Dynamic Bayesian Network (DBN) identification method is developed based on the Minimum Description Length (MDL) to identify and locate functional connections among Pulsed Neural Networks (PNN), which are typical in synthetic biological networks. A score of MDL is evaluated for each candidate network structure which includes two factors: i) the complexity of the network; and ii) the likelihood of the network structure based on network dynamic response data. These two factors are combined together to determine the network structure. The DBN is then used to analyze the time-series data from the PNNs, thereby discerning causal connections which collectively show the network structures. Numerical studies on PNN with different number of nodes illustrate the effectiveness of the proposed strategy in network structure identification.