Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Review of Markov models for maintenance optimization in the context of offshore wind

Dawid, Rafael and McMillan, David and Revie, Matthew (2015) Review of Markov models for maintenance optimization in the context of offshore wind. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society 2015. PHM Society, pp. 269-279. ISBN 9781936263202

[img]
Preview
Text (Dawid-etal-PHM2015-Markov-models-for-maintenance-optimization-in-the-context-of-offshore)
Dawid_etal_PHM2015_Markov_models_for_maintenance_optimization_in_the_context_of_offshore.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (224kB) | Preview

Abstract

The offshore environment poses a number of challenges to wind farm operators. Harsher climatic conditions typically result in lower reliability while challenges in accessibility make maintenance difficult. One of the ways to improve availability is to optimize the Operation and Maintenance (O&M) actions such as scheduled, corrective and proactive maintenance. Many authors have attempted to model or optimize O&M through the use of Markov models. Two examples of Markov models, Hidden Markov Models (HMMs) and Partially Observable Markov Decision Processes (POMDPs) are investigated in this paper. In general, Markov models are a powerful statistical tool, which has been successfully applied for component diagnostics, prognostics and maintenance optimization across a range of industries. This paper discusses the suitability of these models to the offshore wind industry. Existing models which have been created for the wind industry are critically reviewed and discussed. As there is little evidence of widespread application of these models, this paper aims to highlight the key factors required for successful application of Markov models to practical problems. From this, the paper identifies the necessary theoretical and practical gaps that must be resolved in order to gain broad acceptance of Markov models to support O&M decision making in the offshore wind industry.