Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

XRD and XPS studies of surface MMC layers developed by laser alloying Ti6Al4V using a combination of a dilute nitrogen environment and SiC powder

Selamat, M.S. and Watson, L.M. and Baker, T.N. (2006) XRD and XPS studies of surface MMC layers developed by laser alloying Ti6Al4V using a combination of a dilute nitrogen environment and SiC powder. Surface and Coatings Technology, 201 (3-4). pp. 724-736. ISSN 0257-8972

[img]
Preview
Text (strathprints005782)
strathprints005782.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Using a continuous-wave CO2 laser, surface engineering of a Ti-6Al-4V alloy through a combined treatment of laser nitriding and SiC preplacement was undertaken. Under spinning laser beam conditions, a surface alloyed / metal matrix composite (MMC) layer over 300μm in depth and 24mm wide was produced in the alloy by the overlapping of 12 tracks. Microstructural and chemical changes were studied as a function of (a) depth in the laser formed composite layer and (b) of the track position. Using X- ray diffraction (XRD) and X-ray photospectrographic (XPS) techniques, it was shown that the composite layer contained a complex microstructure which changed with depth. At the surface, a non-stoichiometric, cubic TiNx solid solution ( possibly a carbonitride) containing C and Si , where x ≈ 0.65-0.8, was prominent, but was replaced by α′-Ti with increasing depth to 300μm. TiC phase was also identified, and the presence of TiN0.3 and Ti5Si3 phases considered a distinct possibility. 1