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ABSTRACT 

When carrying out vibration health monitoring (VHM) of a structure it is usually assumed that the 

structure is in the absence of fluid interaction or that any environmental effects which can cause 

changes in natural frequency either remain constant or are negligible. In certain cases this condition 

cannot be assumed and therefore it is necessary to extract values of natural frequencies of the 

structure if it were in the absence of fluid interaction from those values measured. This paper 

considers the case of a thin circular plate in contact with a fluid cavity giving rise to strong 

structural/fluid vibration interaction. The paper details the free vibration analysis of the coupled 

system and through consideration of modal energy, illustrates how the affined modes of vibration of 

the plate and the fluid can be qualitatively described.  The paper then describes a method by which 

the natural frequencies of the plate in the absence of fluid interaction can be obtained from those of 

the plate in interaction with the fluid.  
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1. INTRODUCTION 

 

Vibration Health Monitoring (VHM) of structures is based upon monitoring aspects of the vibration 

signature of the structure and relating any changes in these to the introduction, or progression, of 

damage. Damage in a structure, which can be either concentrated (in the form of a crack) or 

distributed (corrosion, erosion), normally leads to alterations of the stiffness and/or mass, which in 

turn results in  changes in the vibration response of structures. In order to perform successful VHM 

one has to extract damage sensitive features from the pure structural vibration response (removing 

the influence of any interacting environment, including the influence of a fluid cavity) [1]. For some 

structures the natural frequencies can be used as damage sensitive features provided they undergo 

sufficient changes with the introduction of damage [1-3]. Circular plates are simple structures which 

lend themselves well to VHM in the sense that their natural frequencies are affected by damage and 

thus can be used as a basis for damage detection. Another important condition for VHM is that any 

environmental effects such as temperature stressing and/or structural/fluid interaction remain 

constant or better still are not present since these effects alone can cause changes to the vibration 

signature and therefore obscure any changes due to defects in the structure. This paper details the 

development of a method for extracting the natural frequencies of the plate in the absence of fluid 

interaction (which can be then used as the basis of VHM) from those values obtained from the 

plate/fluid cavity coupled system.  

 

The paper commences by presenting a comprehensive analysis of the coupled free vibration of a 

circular plate in interaction with a fluid filled acoustic cavity. The analysis is based upon a similar 

analysis of a circular plate in interaction with a fluid cavity [4] which predicted natural frequencies 

of the coupled system that were in good agreement with values obtained using finite element 

analysis and experiments. The analysis is based upon the basic equations describing the free 

vibration of the plate and of the fluid which are then combined using the Galerkin approach. The 
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analysis proceeds to establish the relative energy between the plate and fluid whilst in interaction 

and finally describes a method whereby the natural frequencies of the plate in the absence of fluid 

interaction can be extracted from knowledge of the natural frequencies of the coupled system 

together with known parameters of the fluid cavity. 

 

2. BASIC ANALYSIS OF THE VIBRATION OF THE COUPLED SYSTEM. 

The equation of motion, describing the free small axisymmetric lateral vibration,  = (r, t), of a 

circular disc in interaction with an acoustic cavity, as shown in Figure 1, is 
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                          Figure 1. Schematic diagram of the plate/fluid interacting system. 
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where, for axisymetric modes of vibration, 
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, aww /= ,  r  = r/a  and  )1(12/ 23 μ−= hED ;

E is Young�s modulus, μ is Poisson ratio and ρd is the plate density; a and h are the radius and 

thickness of the plate, respectively; L is the depth of the cylindrical cavity and p is the acoustic 

pressure inside.  
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where )(rsψ  is the natural mode shape of the disc in the absence of fluid interaction and χ s is a 

constant for that mode, generally referred to as the mode shape coefficient for the mode consisting s 

nodal circles. In this particular case, for a stressed disc clamped at the periphery, the mode shapes, 

)r(sψ , are according to [5]: 
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where sξ  are roots (values of s = 1, 2, 3 etc.) computed from the equation: 
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and I0, I1 and J0, J1 are the Bessel functions (order zero and one). 

For a particular value of s, the natural frequency of free undamped vibration, ,sω  is then: 
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where sξ  is a non-dimensional parameter related to the natural frequency  sω of the plate in the 

absence of fluid interaction. Table 1 below lists values of sξ  for the first three ( s = 1,2 and 3) 

axisymetric modes of a circular plate clamped around the periphery. 

        s                 sξ     

       1              3.1962 

       2              6.3064 

       3              9.4395 

Table 1. Non-dimensional natural frequencies, sξ , for the axisymetric modes of a clamped circular 

plate.      

 For a particular mode of vibration for the disc in the absence of fluid interaction, i.e., substitute 

equation (2) into equation (1) with p = 0: 
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Therefore combination of equations (1) and (6) gives: 
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The form of the acoustic pressure, p, acting on the disc will now be established by reference to the 

acoustic cavity. Consider the acoustic cavity shown in Figure 1, whose velocity potential,  

φ = φ(x, r, t),  is described by the equation 
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and substituting equation (9) into (8) gives 
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where  
c

aωλ =   and k is a constant.  For the case where the right hand side of equation (10) is 

equal to �k
2
 gives 
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Therefore the condition (11) has roots αq (q = 1, 2, 3 etc.), which satisfy the equation 00 =′ )(J α . 
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At 1=x , the axial component of the velocity of the gas and the lateral velocity of the plate must be 

equal, i.e, 
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Therefore combining equations (2) and (12) renders 
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Now using the orthogonal properties of the eigenfunction, ( )rJr qα0 , by multiplying both sides of 

equation (13) by ( )

 4
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the value of which can be obtained through standard numerical integration. 

Now the pressure, p, at the surface of the plate is given by: 
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Substituting equation (16) into equation (7) gives: 
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Multiplying both sides by ( )rJr qα0  and integrating between 10 ≤≤ r  renders: 
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a non-dimensional factor η  instead of ω can be introduced and is defined by the relation: 
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Hence equation (17) can be re-written as 
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Equation (19) can be represented in matrix form as 
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Hence values of η  can be obtained (iterated upon) which renders the determinant of matrix (20) 

equal to zero. Consequently for each of these values (roots) of η  the corresponding values of mode 

shape coefficients χ 1, χ 2, ��� χ n, can be obtained. The determinant of this matrix equation is 

obtained by performing the LU decomposition [7], whereupon the value of the determinant is the 

product of the diagonal terms. Subsequently these root values of η  which render the determinant 



zero are substituted back into equation (20) to obtain the corresponding values of the mode shape 

coefficients, Ȥ s,  (normalised to Ȥ 1 in the first instance and then to the largest value) which describe 

which structural modes are present and dominate. 

 

 

The parameters which will give rise to conditions of strong structural/fluid vibration interaction will 

now be developed and postulated.  Figure 2 shows a plot of a natural frequency, sω , of the plate in 

the absence of fluid interaction and the natural frequency, mω , of the acoustic cavity if the top plate 

was rigid.  Both of these natural frequencies are plotted to a base of the controlling parameters, L;  

the depth of the cavity.  Now, for any value of s, the natural frequency of the plate in the absence of 

fluid interaction is given by equation (5) and this value is independent of the depth L.  A natural 

frequency of the solid bounded fluid cavity is obtained by now imposing the condition that 
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Note, in the special case(s) when m=0, this would imply only radial fluid modes with the fluid 

having zero axial component of velocity, this having no interaction with the transverse (lateral) 

vibration of the plate.  Therefore, for , 1≥m
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a

L
L =  

 

This is demonstrated in Figure 2.  As L increases all values of mω  decrease and will, for 

appropriate values of L = Lc correspond to values of sω  of the plate in the absence of fluid 

interaction.  In such circumstances there is strong structural/fluid vibration interaction characterised 

by a region of �veering� whence at L = Lc the strongly interacting system will exhibit two natural 

frequencies close to each other, in which one will be structural/acoustic (st/ac) and the other 

acoustic/structural (ac/st). 
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Therefore for L = Lc equating equations (5) and (22) gives, 
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For the purpose of defining an initial state of strong structural/acoustic interaction, the case where q 

= 1, i.e. Įq = 0 (zero radial component of fluid velocity) will be applied, whence, for strong 

interaction between the plate and the first axial mode of the gas (zero radial), renders the condition. 
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and from equation (23) m
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Prior to examining the characteristics of the strongly coupled vibration modes associated with 

various combinations of s and m, the convergence of the analysis presented will be investigated. 
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Figure 2   Illustration of strong structural / fluid vibration     

interaction 



For this exercise, and all subsequent results, the following parameters will be adopted;  c = 343 m/s 

(air), ȡd = 7800 kg/m
3
, ȝ = 0.3, E = 210 GN/m

2
 and ⎟

⎠
⎞

⎜
⎝
⎛

h

a
= 100. 

 

Convergence 

 

For the convergence analysis consider a plate clamped around its perimeter.  Furthermore the 

dimensions, cL  are selected, in accordance with equation (24), such that strong coupling exists 

between the first natural frequency of the plate in the absence of fluid interaction (s=1) and the first 

axial natural frequency (m=1) of the completely bounded cavity. For such a case the value of cL  is 

6.7177. Accordingly, Table 2 lists the first two values of η  obtained for n (the size of the matrix 

[A ),( ηξ s ] of equation (20)) = 2, 4, 6 and 8.  Furthermore these same two values of η  
can be 

compared with the first natural frequency (s = 1) the plate in the absence of fluid interaction; ȟ1 = 

3.1962. 

 

n = 2 n = 4 n = 6 n = 8 

3.110,  

 

3.111  3.112 

 

3.112 

 

3.281 3.280 

 

3.279 

 

3.279 

 

 

Table 2    Convergence 

  

From Table 2, it is seen that convergence is extremely fast with respect to n; requiring only n = 6 

for a fully converged result to 3 decimal places for these lower modes. Accordingly, forthwith n = 6 

will be used throughout. It is noted that the first value of  η  is lower than ȟ1   and the second one is 

higher. This is in accordance with the observation shown in Figure 2 at cLL = . 

 

 

Energy Analysis. 

 

 In this study, since in all cases we are dealing with some degree of structural/fluid vibration 

interaction, it would be erroneous to describe any mode of vibration as either purely a structural 

mode or an acoustic (fluid) mode. Rather reference will be made to the modes as either 

structural/acoustic (st/ac), to denote modes which are predominantly structural with acoustic 

interference, and likewise acoustic/structural (ac/st) to denote modes which are predominantly 

acoustic but with structural interference. In an attempt to quantify the degree of coupling and 

describe whether modes are mainly structural or fluid acoustic, attention will be drawn to the 

distribution of vibration kinetic energy between the structural and fluid components of the system. 

 

For the plate the maximum kinetic energy of vibration, KEp, is calculated from; 
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For the fluid the maximum kinetic energy, KEf, is calculated from; 
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and both  and  are now obtained by using equations (12) and (14). Also, the percentage 

energy associated with  and  are expressed as, 
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Also a set of eigenvectors for the plate and fluid is 
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Consequently, using the above relative percentage energies, the characteristics of a circular clamped 

disc in strong interaction with an acoustic cavity as described are investigated. Consider the case 

where cL  is 6.7177 which, as before, results in a condition of strong coupling between the first 

mode of the plate in the absence of fluid interaction (s=1), and the first (m=1) axial mode only of 

the fluid cavity if the plate is assumed rigid.  In all cases the ratio of 
h

a
 = 100 and  we will only 

consider roots of the system matrix equation (20-21), η , up to those close to that corresponding to 

the third of the plate in the absence of fluid interaction,  , equal to 9.439. Accordingly Table 3 

list the non-dimensional frequency roots, 

3ξ

η and ȕm, together with the associated vectors; sȤ  , KE , 

KE
  and KE .  
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η , ȕm  Mode Description 

3.112, 0.9477 

(mode 1) sȤ      =   { 1, ~0, ~0, ---------}T      

KE    =   { 47.88, ~0, ~0, --- } ps

KE    =  { 52.03, ~0, ~0, --- } 
x

fq

KE    =  {~0, ~0, -----------  } 
r

fq

Strongly coupled st/ac or ac/st 

mode at s = 1, q = 1, m ~ 1. 

3.279, 1.0526 

(mode 2)+ sȤ       =   {1, ~0, ~0, -------  }T      

KE    =   { 50.99, ~0, ~0, -- } ps

KE    =  { 48.91, ~0,  ~0,-- } 
x

fq

KE   =  {~0, ~0, ~0, ------  } 
r

fq

Coupled ac/st mode at s = 1, q = 1, 

m ~ 1. 

4.524, 2.0033 

(mode 3) sȤ       =   { 1, -0.207, ~0, --- }T      

KE    =   {0.5, ~0, ~0, ------ } ps

KE   =  { 99.5, ~0, ~0, -- } 
x

fq

KE   =  {~0, ~0, ~0, ------ } 
r

fq

Weakly coupled ac/st mode. 

Almost total fluid axial energy at  

q = 1, m ~ 2. 

5.537, 3.0011 

(mode 4) sȤ       =   { 1, -1, ~0, ~0, -- }T 

KE    =   { ~0, ~0, ~0, ----- } ps

KE    =  {99.99, ~0, ~0, --  } 
x

fq

KE   =  {~0, ~0, ~0, ------  } 
r

fq

Weakly coupled ac/st mode. 

Almost total fluid axial energy at  

q = 1, m ~ 3. 

6.297, 3.8813 

(mode 5)+ sȤ       =   {~0, 1, ~0, ~0, -- }T 

KE    =   { ~0, 93.53, ~0, - } ps

KE    =  { 6.22, ~0, ~0, - } 
x

fq

KE   =  {~0, 1.43, ~0, ---  } 
r

fq

Coupled st/ac mode at s = 2, q =1 , 

m ~ 4. 

6.400, 4.0089 

(mode 6) sȤ        =   {~0, 1, ~0,------  }T 

KE     =   {~0, 6.01, ~0, --  } ps

KE   =  {93.90, ~0, -----  } 
x

fq

KE    =  {~0, ~0, ~0, ----  } 
r

fq

Weakly coupled ac/st mode. 

Almost total fluid axial energy at  

q = 1, m ~ 4. 

7.148, 5.002 

(mode 7) sȤ       =   {0.54, 1, -0.17,-- }T 

KE    =   {~0, ~0, ~0, ---- } ps

KE    =  { 99.9, ~0, -------} 
x

fq

KE    =  { ~0, ~0, ~0, ---- } 
r

fq

Weakly coupled ac/st mode. 

Almost total fluid axial energy at  

q = 1, m ~ 5. 

7.829, 6.001 

(mode 8) sȤ      =   {0.78, 1, -0.46,-- }T 

KE    =   {~0, ~0, ~0, ----  } ps

KE   =  {99.99, ~0, ~0, -- } 
x

fq

KE    =  {~0, ~0, ~0, ------ } 
r

fq

Weakly coupled ac/st mode. 

Almost total fluid axial energy at  

q = 1, m ~ 6. 

η , ȕm  Mode Description 



8.457, 7.0009 

(mode 9)       =   {0.83, 0.9, -1, ---}T sȤ
KE    =   {~0, ~0, ~0,------} ps

KE    =  {99.99, ~0, -------} 
x

fq

KE   =  {~0, ~0, ~0,-------} 
r

fq

Weakly coupled ac/st mode. 

Almost all fluid axial energy at    

q = 1, m ~ 7. 

9.041, 8.0004 

(mode 10) sȤ      =   {0.28, 0.28, -1, --}T      

KE   =   {~0, ~0, ~0, ----} ps

KE   =  {99.99, ~0,--------} 
x

fq

KE    =  {~0, ~0, ~0, ------} 
r

fq

Weakly coupled ac/st mode. 

Almost all fluid axial energy at    

q = 1, m ~ 8. 

9.149, 8.193 

(mode 11)     =   {0.18, -0.22, 1,---}T      sȤ
KE    =   { ~0, ~0, ~0,------} ps

KE  =  { ~0, ~0, ~0, -----} 
x

fq

KE  =  {~0, 99.99, ~0, ---} 
r

fq

Weakly coupled ac/st mode. 

Almost all fluid radial energy at    

q = 2. 

9.183, 8.254 

(mode 12) sȤ       =   {0.16, -0.19, 1,---}T      

KE    =   {~0, ~0, ~0,-------} ps

KE    =  {~0, 1.47, ~0,-----} 
x

fq

KE    =  {~0, 98.5, ~0,-----} 
r

fq

Same as above except small axial 

fluid component at q = 2, m ~ 8. 

9.282, 8.433 

(mode 13) sȤ       =   {~0, -0.1, 1,-----}T      

KE   =   {~0, ~0, ~0, -----} ps

KE    =  {~0, 5.62, ~0, ---} 
x

fq

KE    =  {~0, 94.38, ~0,--} 
r

fq

Same as above except growing 

axial fluid component. 

9.426, 8.698 

(mode 14)+ sȤ      =   {~0, ~0, 1, ~0,--}T      

KE    =   {~0, ~0, 63,-----} ps

KE    =  {0.4, 4.3, ~0, ---} 
x

fq

KE    =  {~0, 32 , ~0,--} 
r

fq

Strongly coupled st/ac mode 

between s = 3 on plate and radial 

fluid mode at  q = 2. 

9.450, 8.742 

(mode 15) sȤ       =  {~0, ~0, 1, ~0,--}T      

KE    =   {~0, ~0, 36.9,---} ps

KE    =  {1, 7.4, ~0,-------} 
x

fq

KE    =  {~0, 55.3, ~0, -----} 
r

fq

Strongly coupled ac/st mode 

between s = 3 on plate and radial 

fluid mode at  q = 2. 

9.590, 9.002 

(mode 16) sȤ       =   {~0, ~0, 1, ~0,--}T 

KE    =   {~0, ~0, 0.6, ----} ps

KE    =  {99.4, ~0,------} 
x

fq

KE   =  {~0, ~0, ~0,-----} 
r

fq

Weakly coupled ac/st mode. 

Almost all fluid axial energy at    

q = 1, m ~ 9. 

                                                                                     

Table 3 � Modes of free vibration of the plate/fluid interacting system with associated energy vectors.                 
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Table 3 lists details of all coupled modes of vibration up to around a frequency corresponding the 

3
rd

 natural frequency of the plate in the absence of fluid interaction. From this table it is evident that 

the modal energy of the subsystems renders an excellent means of describing the degree of coupling 

and dominance of the structure or fluid. It is also interesting to note that for modes with a strong or 

moderate structural component, the vector of mode shape coefficients   is very well defined. For 

example for the first two coupled modes (1 and 2) with frequencies around that corresponding to the first 

natural frequency of the plate in the absence of fluid interaction,  ={1, 0, 0, ---}T and for mode 5 which is 

once again structurally dominant at a frequency close to that of the second natural frequency of the plate in 

the absence of fluid interaction,  ={0, 1, 0, 0, 0, ----}T.  On the other hand, for modes of a strong acoustic 

nature, such as modes 3 and 4 in Table 3, it is observed that the vector   indicates significant contributions 

from more than one structural mode, e.g., mode 4 where ={1, -1, 0, 0, - }T. This observation of the form of 

the vector  for modes with a strong or moderate structural energy component will be seen to be important 

when considering the inverse problem, i.e., the problem of being able to extract the natural frequencies of 

what the plate would be in the absence of fluid interaction, 

sȤ

sȤ

s

sȤ

sȤ

sȤ

sȤ

ξ , when one has obtained values of the 

natural frequencies of the coupled system, η .  

 

3. THE INVERSE EXTRACTION PROBLEM. 

 

In the foregoing analysis known values of the structural natural frequencies together with the 

parameters of the fluid cavity were used as the input to computed values of natural frequencies of 

the structural/fluid coupled system and corresponding vector of structural mode shape coefficients 

from which the relative levels of vibration kinetic energy were obtained for the structure and the 

fluid. As was seen from Table 3 a significant difference occurs between the natural frequencies of 

the coupled system, where there is significant relative vibration energy associated with the 

structure, and the natural frequencies of the structure in the absence of fluid interaction. (To 

illustrate this, Figures 3a and 3b show typical plots of vibration energy of the plate in the absence of 

fluid interaction and the plate in interaction as described (assuming damping to being negligible) up 

to frequencies around that of the 3
rd

 natural frequency of the plate in the absence of fluid 

interaction.) 
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In such modes however it was observed that the vector of mode shape coefficients, , was well 

defined with a single unity at the structural mode in question and zeros for all other components. 

This, as will be seen, is very important with respect to solving the inverse problem. 

sȤ

 

In structural modal analysis and vibration-based damage detection it is the values of the structural 

natural frequencies alone, , which are of importance. Accordingly, in the case where the 

structure is in interaction with a fluid cavity (as is the case here), accepting the coupled natural 

frequencies obtained from experiments upon the coupled system to being sufficiently accurate 

estimates to the structural natural frequencies, could have grave consequences and give erroneous 

information. Accordingly, the inverse problem in this case is defined as extracting the structural 

natural frequencies, 

sξ

sξ , from the values of the coupled natural frequencies, η  , obtained from 

experiments and known parameters of the fluid cavity in interaction. 

 

To achieve this, equation (20) can be written in the form; 

 

                                     ss ȤA ),( ηξ  = 0ȤĬKKȍ =− s)(                                    (27) 
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         Figure 3b      FFrreeqquueennccyy  rreessppoonnssee  ooff  ppllaattee  iinn  iinntteerraaccttiioonn  



where  K  =                                                               (28) 
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is diagonal matrix containing values of the non-dimensional natural frequencies of the structure 

alone.  Now introducing the matrix B  as 

 

                                                                                                      (29) ĬKKB
1−=

 

Equation (27) can be written in the form 

 

 

                      [ ] 0ȤȍB =− s                                                              (30) 

 

 

 Note that the matrix  contains the values of K sξ  obtained from equations (4) and (15). However it 

will be assumed that the influence of small changes of sξ (due to the effect of damage to the 

structure) on the normal eigenfunctions, equation (4), and hence  from equation (15) are 

negligible and the same form of the K matrix, based upon equations (4) and (15), is used 

irrespective of any changes to 

qsk

sξ . This assumption will be examined further at a later stage in this 

paper. Therefore, the matrix B above is assumed to contain only values of the coupled natural 

frequencies of the system, η , and pre-known dimensional and physical parameters of the plate and 

fluid cavity. On the other hand the matrix ȍ  contains only the unknown values of the non-
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dimensional natural frequencies of the structure in the absence of fluid interaction which we aim to 

determine. Accordingly equation (30) can now be expressed in the following form; 
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              (31) 

 

Now recalling that at coupled natural frequencies which are characterised by significant vibration 

energy of the structure around natural frequencies which are close to those of the structure in the 

absence of fluid interaction, the vector of mode shape coefficients, , is shown to be well defined 

with a single unity at the structural mode in question and zeros for all other components to within 3 

decimal places. Upon that basis, and from matrix equation (31) above: 

sȤ

 

 

                                                      4
sss b=ξ                                           (32) 

 

for the coupled condition described above. To test the feasibility and accuracy of the inverse 

methodology presented, equations (20) and (21) are used to compute values of the non-dimensional 

natural frequencies,  Ș,  of a coupled plate/fluid interacting system with relevant input values of in 

the absence of fluid interaction non-dimensional natural frequencies, sξ , of the cantilever plate 

(from Table 1), the standard eigenfunctions relating to the plate in the absence of fluid interaction 

and the completely rigidly enclosed fluid cavity, and other pre-known parameters of the fluid cavity 

contained in the matrix A. The computed values of Ș are then used to generate the respective values 

of .  For the modes which have the largest value of  for each value of s, the 

respective value of  Ș is then used to determine the respective   matrix, equation (29), along with 

the standard eigenfunctions relating to the plate in the absence of fluid interaction and the 

completely rigidly enclosed fluid cavity, and other pre-known parameters of the fluid cavity as 

before. Subsequently for the respective value of s, the in the absence of fluid interaction natural 

frequency, 

spKP%
spKP%

B

sξ , is then calculated from equation (32) and compared to that value used in equations 

(20) and (21). Two examples will be considered. The first example will apply the methodology to 

the case where the plate is undamaged and therefore the values of  sξ  are those listed in Table 1. 

The second example will consider the case where damage to the plate is simulated by assuming that 

the values of sξ  have all been reduced by 10%. 

 

3.1 Plate with no defect. 

 

The above inverse methodology will first be tested by considering the coupled modes labelled + in 

Table 3 (modes 2, 5 and 14). In these cases it can be seen from Table 3 that these modes are those in 

which there is the highest proportion of structural vibration energy for each of the first 3 normal 

modes of the structure. Therefore, for these modes, Table 4 tests the above inverse methodology by 

computing these first three natural frequencies of the plate in the absence of fluid interaction from 

equation (32) and comparing these values to those presented in Table 1 for the plate having no 

defects and used in equations (20) and (21) for the purpose of computing the respective value of Ș. 
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    s                 Ș         
spKP% 4

sss b=ξ             sξ (Table 1)   

    1    50.99           3.279           3.1960                  3.1962 

    2    93.53            6.297           6.3065                  6.3064 

    3    63.00           9.426           9.4397                  9.4395 

 

Table 4. Comparison between values of sξ  and those values obtained from equation (32) when the 

values of coupled natural frequency, Ș, are introduced in equation (29). 

 

Table 4 demonstrates the accuracy of the above inverse methodology to obtaining the structural 

natural frequencies from values of natural frequencies of the coupled system together with pre-

determined physical parameters of the structure and the acoustic cavity. 

 

 

 

3.2  Plate with defect. 

 

This case will test the inverse methodology by considering the case where the plate has some 

defect(s) such that its in the absence of fluid interaction natural frequencies, sξ , have all been 

reduced by 10%. In this case, once again, it will be assumed that such defect(s) do not incur 

significant change to the contents of the matrix K of equation (28). Therefore, the same form of the 

eigenfunction, equation (3), is used with the original values of sξ to generate the values of  

contained in equation (19). However values of 

qsk

sξ reduced by 10% are used in the section  

( )⎥⎥⎦
⎤

⎢
⎢
⎣

⎡
−−

qq

s αα
ρηξ

tan
144  of equation (21) and the inverse process described in Section 3.1 is 

repeated. In addition, in order to arrange that there will exist strong coupling between the first 

modes of the plate and fluid cavity as with the examples so far, for this case the non-dimensional 

depth of the fluid cavity is, from equation (24), c

sp

L = 8.2934.  Table 5 lists the results for this test. 

 

   s                  Ș         KP% 4 b=ξ sss s               0.9ξ ( sξ  from Table 1)   

  1     53.498          2.970           2.8762                  2.8766 

  2      93.397          5.664           5.6759                 5.6758 

  3      99.24           8.4886         8.4955                 8.4956 

 

Table 5 Comparison for a plate with defect reducing natural frequencies, sξ , by 10%. 

 

From Table 5 it is seen that the method performs extremely well for the case where the plate has 

defect(s) giving rise to reductions in natural frequency from the undamaged plate values, and the 

matrices K and B from equations (28) and (29) respectively are generated using the eigenfunctions 

of equation (3) for the plate in the undamaged state. 

 

4. CONCLUSIONS. 

 

A method has been developed to estimate the natural frequencies of a circular plate in the absence 

of fluid interaction from the values of the natural frequencies of the vibrating interactive system, 

plate in interaction a fluid cavity, of which details of the fluid sub-system are known. These 

estimates extracted were found to be in extremely close agreement with the exact theoretical values. 

The extraction of the pure structural natural frequencies (removing the influence of any interactions 

of the structure with the environment) is a very important condition for the development of 
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successful VHM procedures.   This is an important step towards the development of practically 

applied vibration health monitoring methods. The paper presents a unique attempt to analytically 

characterize the vibration response of the coupled structure/fluid system and extract rather precisely 

the pure structural natural frequencies from those of the interacting system.   
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