Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A new proof-of-concept in bacterial reduction : antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma

MacLean, Michelle and Anderson, John G and MacGregor, Scott J and White, Tracy and Atreya, Chintamani D (2016) A new proof-of-concept in bacterial reduction : antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma. Journal of Blood Transfusion, 2016. ISSN 2090-9195

[img]
Preview
Text (Maclean-etal-JBT-2016-Antimicrobial-action-of-violet-blue-light-405-nm-in-ex-vivo-stored-plasma)
Maclean_etal_JBT_2016_Antimicrobial_action_of_violet_blue_light_405_nm_in_ex_vivo_stored_plasma.pdf - Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Bacterial contamination of injectable stored biological fluids such as blood plasma and platelet concentrates preserved in plasma at room temperature is a major health-risk. Current pathogen-reduction technologies (PRT) rely on the use of chemicals and/or ultraviolet-light, which affects product quality and can be associated with adverse events in recipients. 405nm violet-blue light is antibacterial without the use of photosensitizers, and can be applied at levels safe for human exposure, making it of potential interest for decontamination of biological fluids such as plasma. As a pilot study to test whether 405nm light is capable of inactivating bacteria in biological fluids, rabbit and human plasma were seeded with bacteria and treated with a 405nm light emitting diode (LED) exposure system (patent pending). Inactivation was achieved in all tested samples, ranging from low volumes to pre-bagged plasma. 99.9% reduction of low density bacterial populations (≤103 CFUml-1), selected to represent typical ‘natural’ contamination levels, were achieved using doses of 144 Jcm-2. The penetrability of 405nm light, permitting decontamination of pre-bagged plasma, and the non-requirement for photosensitizing agents, provides a new proof-of-concept in bacterial reduction in biological fluids, especially injectable fluids relevant to transfusion medicine.