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Abstract. Target tracking in a multi-camera system is an active and
challenging research that in many systems requires video synchronisation
and knowledge of the camera set-up and layout. In this paper a highly
flexible, modular and decentralised system architecture is presented for
multi-camera target tracking with relaxed synchronisation constraints
among camera views. Moreover, the system does not rely on positional
information to handle camera hand-off events. As a practical applica-
tion, the system itself can, at any time, automatically select the best
target view available, to implicitly solve occlusion. Further, to validate
the proposed architecture, an extension to a multi-camera environment
of the colour-based IMS-SWAD tracker is used. The experimental results
show that the tracker can successfully track a chosen target in multiple
views, in both indoor and outdoor environments, with non-overlapping
and overlapping camera views.

Keywords: video analytics, multi-camera, decentralised, tracking.

1 Introduction

The need for automatic analysis of video data on computer systems has led
to the development of image and video processing techniques usually referred
to as Video Analytics (VA), to extract relevant information from surveillance
camera feeds. Central to many smart surveillance systems is the detection and
identification of a target object in consecutive frames, i.e. target tracking [1].

In the context of multi-camera systems, information extracted from a set of
semantically clustered cameras can be fused together and exploited, to achieve a
better understanding of the environment surrounding the cameras [2] and mon-
itor areas wider than a single camera field of view (FOV). Each sensor can be
associated with VA processing tasks [3,4], to distribute the surveillance workload
among cameras and decentralise it towards the edges of the network. This ap-
proach produces a collaborative, or co-operative, network of smart surveillance
sensors [5, 6]. To fully exploit the information gathered by a sensor network,
both topological and geographical layouts of the network can be used. While the
former defines which cameras have overlapping FOVs, the latter specifies the
position in space of each sensor, with respect to a common coordinate frame.

From the network topology only, it is possible, at any time, to know which
other cameras should be seeing a specific target in their FOV. If overlapping



cameras can simultaneously detect the same target, information from multiple
FOVs can be merged to obtain a better understanding of the target. Such a
smart surveillance system can automatically select, from a set of views, the one
that gives the best visualisation of the target, and camera overlapping can be
exploited to overcome target occlusion [7]. Many algorithms have been proposed
in literature for multi-camera system calibration [8, 9].

In this paper a complete, highly flexible, modular system architecture is pro-
posed for decentralised multi-view target tracking, where synchronisation con-
straints among processes can be relaxed. Unlike the approaches in [10, 11], the
presented novel architecture does not rely on geographical layout, to initialise
the trackers or handle camera handoff events. Tracking in separate camera views
is performed solely on the visible characteristics of the target, reducing the sys-
tem setup phase to a minimum. For this purpose, only the knowledge of the
topological layout of the network is required at initialisation step. This system
architecture is complete, because it also includes initial target detection upon oc-
currence of events of interests; it is also modular because the specific algorithms
implemented in its components can be changed and new features can easily be
added to the system, without affecting how the proposed architecture works.

In the context of multi-view systems, colour as a discriminant feature is
ideal for target tracking, as it requires minimal computation and it is very re-
silient against geometric transformations. To validate the effectiveness of the pro-
posed architecture, a modified version of our colour-based IMS-SWAD tracker
described in [12] is used as a tracking algorithm in each camera view. In prac-
tice any tracking algorithm could be adopted. However, the IMS-SWAD tracker
has been chosen because it is easy to appreciate how its operation in each view
does not rely on any positional information extracted from other views. Indeed,
algorithmic parameters are automatically set in separate views, with respect to
the colour characteristics of the target only.

The remainder of the paper is organised as follows. Section 2 describes in
detail the proposed architecture and its components. Section 3 describes the
improved IMS-SWAD tracker and its incorporation into the architecture. Ex-
perimental results are reported in section 4, while section 5 concludes the paper.

2 Decentralised Multi-Camera Tracking System

From a conceptual point of view, multi-camera target tracking system can be
divided into four tasks:
1. initial target detection upon occurrence of an event of interest;
2. target status storage and broadcasting;
3. target tracking in each separate camera view;
4. data collection from all the trackers and collation.

Such tasks can be mapped into separate processes, which share information
with each other for target tracking across multiple views. Therefore four types
of processing entities are defined, (i) a detection agent (DA) symbolised as D,
(ii) a tracking agent (TA) symbolised as T , (iii) a status server (SS) and (iv) a
data server (DS). Fig.1a shows the layout of an implementation of the system.
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Fig. 1. System implementation with two cameras C1 and C2 (a). The DA D1 detects
a target and sends data to the SS (b). The SS broadcasts target information to both
TAs T1 and T2 (c). The TAs track the target and send their results to the DS (d). The
DS merges the TA results and sends the new target representation to the SS (e). The
SS broadcasts the new target representation to all the TAs (f).

A separate TA and DA must be associated with each camera in the system,
to track a target in a single camera view and to be able to detect events of
interest in each camera view respectively. Conversely, it is reasonable to have a
single SS acting as a central hub that receives detections from single DAs and
broadcasts these to all the TAs. Concerning data collection, a single DS can act
as a sink for the tracking information produced by all the TAs.

In general, for a multi-camera tracking system with N cameras, tracking
agent Tn and detection agent Dn are associated with the nth camera Cn with
n ∈ [1, N ], and Fni is the ith frame in the nth camera view. For all the agents,
a single SS and DS are available. As shown in Fig.1b, target information is first
sent by a DA (D1) to the SS, upon occurrence of an event of interest. The SS
broadcasts this information to T1 and T2 (Fig.1c). The TAs send their tracking
results to the DS (Fig.1d), which merges them in an attempt to resolve possible
inconsistencies and produce a unique multi-camera track of the target. Also, the
DS can produce a better representation of the target using information from
different TAs; that can then be transmitted from the DS to the SS (Fig.1e),
which can then broadcast it again to all the TAs (Fig.1f). This cycle allows for
a refinement of the target model, by exploiting characteristics of the target in
the different views available in the system.

All agents and servers are loosely coupled, as they share their information
through simple messages over the network. The system architecture is therefore
highly flexible and multiple configurations are possible to deploy the processing
entities on physical processing units. For example: a) all entities can run on the
same machine; b) SS and DS can run on the same machine, while each set of TA
and DA associated with the same camera runs on a different machine; c) each
entity runs on a dedicated machine.



2.1 DA – Target detection

Any DA in the system can select a target within its FOV, upon occurrence
of a predefined event of interest. The detection algorithm implemented in the
DA is application-dependent and one could either manually select the target, or
apply the automatic event detection algorithms [13, 14]. In the current system,
our adaptive algorithm for the detection of abandoned and removed objects
presented in [15] has been implemented in the DAs. However, differently from
[15], the algorithm in the DA Dn sends to the SS only the camera number n and
the portion of frame Fni corresponding to the selected target (Fig. 2). The reason
for this transmission is to further decouple the DAs from the TAs: the TAs can
extract from the “image” of the target the features required for their tracking
algorithm, without the DAs needing to know what these features and algorithms
are. Moreover, separate TAs can implement different tracking algorithms, so they
may need to extract different features, such as colour, texture, shape, and so on.

2.2 SS – Target information storage

The SS receives data from a DA, i.e. the portion of frame Fni representing the
detected object (Fig. 2) and stores it along with a timestamp, the camera number
n and a unique identification number ξ for the target.

The SS acts as a sink for all the DA detections, while it follows a publisher-
subscriber pattern with respect to the TAs. More specifically, the SS is always
running and the TAs subscribe to it at their setup time. When the SS receives
target data from a DA, it broadcasts such information to all its subscribers, i.e.
TAs, and also to the DS, so that the DS knows what target, with identification
number ξ, is under tracking within the system. The TAs can then look for the
new target in their FOVs, and track it if present. The role of the SS is to store
and forward data between DAs and TAs, and between DAs and DS.

2.3 TA – Single view target tracking

The TAs perform target tracking in single views, independently of each other.
After receiving target information from the SS, a TA is initialised in the current
frame when the data from the SS is received. Then the TA performs a loop in
which a single step of the selected tracking algorithm is executed on the next
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Fig. 2. DA target detection: (a) background image; (b) new frame Fn
i with the selected

target in it; (c) close-up of the portion of Fn
i sent to the SS.



frame. If the target has been found, a message with relevant information is sent
to the DS. Otherwise, the TA proceeds directly to the next frame. In the rest
of the paper, the case where the target has been found by the tracker in the
current frame is referred to as “tracking hit”.

Any algorithm can be adopted in the TAs. However, the chosen algorithm
must be able to extract discriminative features of the target from the data re-
ceived from the SS, in order to overcome the problem of different target appear-
ance across multiple FOVs in a multi-camera system. In the current implemen-
tation of the system, a modified version of the colour-based IMS-SWAD tracker
introduced in [12] is adopted, as described in more detail in section 3.

2.4 DS – Data collation and multi-view tracking

The DS collects tracking results from all the TAs and collates them, to remove
inconsistencies and create a unique coherent multi-view track of the target.

In a multi-camera tracking system it is possible to synchronise multiple ma-
chines using the Network Time Protocol (NTP), to be able to reliably collate
target tracks from different views. However, it is difficult to ensure temporal syn-
chronisation at a frame level among multiple trackers. Therefore the presented
system adopts a notion of temporal synchronisation in terms of tracking hits
falling in the same time interval defined by the DS. This means that the DS
defines a time line of consecutive time slots tDSs of given temporal length ∆tDS .
The TAs run at their own specific pace and regularly send their tracking results
to the DS. Tracking hits flagged by different TAs and received by the DS within
the same time slot tDSs are considered to be synchronous.

Similarly, each TA defines a time line of consecutive time slots tTAs of tem-
poral length ∆tTA, and tracking hits in separate frames falling within the same
time slot tTAs are accounted for as a unique tracking hit. At the end of each time
slot tTAs , the TA sends its tracking results to the DS if a target was found in such
a time interval; otherwise no transmission takes place. The information sent by
the nth TA includes the camera number n, the target number ξ, a timestamp
and the value of the highest match λξn, for all the tracking hits in time slot tTAs .
The reason behind defining also a time slot tTAs for the TAs is to avoid the need
to transmit possible tracking hits for every frame processed by a TA.

Having defined time slots for both DS and TAs, timing constraints for the
overall system are relaxed and ∆tDS and ∆tTA can be set to accommodate the
application requirements. As a guideline, assuming the worst case where the DS
processes TA notifications sequentially, the lengths of ∆tDS and ∆tTA can be
set according to:

∆tDS > N∆tTX +∆tTA

∆tTA > ∆tTX

∆tTA ≥ 1
fpsTA

(1)

where N is the number of TAs sending information to the DS, ∆tTX is the
transmission time from TA to DS and fpsTA is the TA processing rate. The
“frame rate” of the DS is 1/∆tDS .



At the end of each time slot tDSs , the DS knows which TAs have found the
target ξ in their FOV and which have not. Moreover it can use the match value
λξn of each tracking hit as a level of confidence for it. When any two TAs, Tn and
Tm, send their tracking hits to the DS for the same target ξ, in the same time
slot tDSs , the DS selects as best view for the time slot ∆tDS the view associated
with the tracker that returned the highest match value; therefore the DS can
generate a single continuous video stream made up of the portions of video feeds
coming from the selected best views, at each ∆tDS . Such a strategy is also useful
in overlapping cameras, to be able to select the best view of the target in case
of occlusion.

Moreover, as the DS gathers all the tracking hits and collates them, it can be
argued that it indirectly performs target tracking across multiple camera views
as oppose to a single view in the TAs. Also, the DS can use the gathered data to
update the current model of target ξ; the updated model can then be forwarded
to the SS, for a new broadcast to all the TAs.

3 Multi-view IMS-SWAD tracking algorithm

The effectiveness of the proposed architecture for multi-camera target tracking
is validated using the colour-based IMS-SWAD tracker described in [12]. This
colour-based tracker is selected to highlight the fact that the proposed architec-
ture does not require any position information of the target or of the cameras.
The only required information is whether or not cameras have overlapping FOV.
The only modification required in our IMS-SWAD [12] to be integrated within a
multi-camera environment is in the initialisation step. After that, the algorithm
running in each TA processes its own camera view independently from the oth-
ers and therefore it is ideal for a parallel implementation in the context of a
decentralised tracking system, as the one described in this paper.

For multi-view colour tracking, colour calibration among all the cameras is
required. Therefore the Gray World Assumption [16] is used to colour-normalise
all camera views. Such a normalisation is applied to both TAs and DAs. Further,
to make the algorithm more resilient to different lighting conditions in separate
views, the YCbCr colour space is adopted, but the luminance component Y is
removed and only the red and blue chrominance Cb and Cr are used to compute
colour distributions.

Knowledge of the camera topology is required for a correct setup of the in-
stance of the algorithm in each view. For this purpose the tracking algorithm
only needs to know which cameras have overlapping FOVs. Therefore, the re-
quired information can be easily encoded with a look-up table (LUT) stating
whether two camera views overlap or not. Such an LUT can be provided to each
tracker instance, i.e. TA, at setup time. In the context of the decentralised ar-
chitecture (section 2), for a target ξ selected in camera Cn, the initialisation of
the tracker Tn is same as the one described in [12]. For the other N − 1 trackers
Tm with m 6= n, their initialisation depends on whether the FOVs of cameras
Cn and Cm overlap or not.



3.1 Non-overlapping camera views

If cameras Cn and Cm do not overlap, target ξ selected at a given time instant in
Cn is certainly not present in Cm. Clearly the position in Cm of the best match for
the given target model Q refers to an object which is not the target. Therefore
the threshold τm for tracker Tm is computed as:

τm = arg min
om
l

[d(oml )] (2)

where oml are the candidate points selected as in the tracker initialisation step
in [12], but with no spatial constraints on their position in the initial frame Fm0 .

After initialisation, tracker Tm proceeds to the failure recovery step, as by
definition target ξ was not present in Fm0 , so the initial target position in Fm1 is
undefined. Here it is assumed that, when the target ξ enters the FOV of camera
Cm, its colour distribution will have a distance d(·) from the target model Q
smaller than any other object in the frame Fm0 and therefore smaller than τm.
So the tracker Tm can successfully start to track the correct target ξ in Cm.

3.2 Overlapping camera views

If cameras Cn and Cm have overlapping FOVs, it means that target ξ should be
present in both Fm0 and Fn0 . The failure recovery procedure applied to Fm0 gives
the position of the best match for Q in the frame. This best match should be
the correct target ξ, assuming that its distribution minimises the distance d(·)
from Q. So tracker Tm finds the correct target ξ in Fm0 and then proceeds to the
next frame Fm1 .

If the target ξ is hidden or not visible in Fm0 , the best match found in the
frame by the failure recovery procedure will refer to an incorrect target ξ′. This
incorrect tracking hit is automatically corrected by the tracker as soon as target
ξ is visible again in camera Cm, as ξ gives a higher match than ξ′ and therefore
ξ is selected as target to track. However, an initial value for the threshold τm is
computed anyway and it is updated by the tracker Tm in the next frames of Cm.

This approach allows an initial value of the threshold for each camera view
to be defined. Such threshold values are soon tuned by the trackers, so potential
initial incorrect hits are confined to a small number of frames. Moreover possible
tracking inconsistencies across different views can be resolved by the DS at data
collation time as explained in section 2.4.

4 Experimental results

The purpose of the following experiments is to visually and numerically evaluate
the proposed architecture and the IMS-SWAD tracker implemented in the TAs.
In the current system software, the tracking block of the TA components is
implemented in Matlab and the communication blocks, the SS and the DS are
implemented in Java. The computer used to run the experiments is an Intel Core
2 Quad CPU at 3 GHz, with 3 GB of RAM. The cameras used to record the
indoor sequences are three 1.3 megapixel IP cameras from Arecont Vision.



(a) no overlap, view 1 (b) no overlap, view 2 (c) no overlap, view 3

(d) overlap, view 1 (e) overlap, view 2 (f) overlap, view 3

Fig. 3. Indoor testing: non-overlapping (top row) and overlapping (bottom row) views.

4.1 Tracking performance

The tracking performance of the system is numerically evaluated in terms of
precision, recall, specificity and accuracy [1]. In all the experiments in this paper,
the ground truth is manually annotated by putting a bounding box around the
main colour of the chosen target.

As a first experiment, two multi-camera indoor video sequences have been
recorded, respectively one with three non-overlapping views and one with three
overlapping views (Fig.3). In this experiment, the target (a pink cap), which
is manually moved from view to view, has been automatically detected by the
algorithm implemented in the DAs, in one of the views and then tracked by the
TAs in the other two views (Fig.3). This is repeated for all views to obtain a total
of six tests (1-6) for both cases. After target detection in the DA, the portion
of frame corresponding to the selected target is sent to the SS (section 2.1). As
it is difficult to make sure that pre-recorded sequences are re-run synchronously
during testing, the TA activity is simulated by launching one TA per sequence
at the time. Each TA initially subscribes with the already running SS, which in
turns sends to the TA the target information previously stored. The TA computes
the target model needed and tries to track the target in its corresponding video
sequence. In this way the target is then tracked in all six tests.

Numerical values of such tests compared with the manually labelled ground
truth in Fig.4 show that the system has high precision, recall, specificity and
accuracy, i.e. more than 85% in all 12 tests. In the overlapping case in particular,
neither False Positives nor False Negatives have been detected (Fig.4b). These
results indicate that the system and in particular its current implementation,
has good tracking performance in an indoor environment.

As a second experiment, six entire video sequences (1-6) from the PETS2009
[17] dataset have been used. Since the focus of this experiment is not on the DA,
the target (the woman in the red jacket (Fig. 5)), is manually selected in frame



1 2 3 4 5 6
80

90

100

Tests

P
er

ce
nt

ag
e 

(%
)

 

 

Precision
Recall
Specificity
Accuracy

(a)

1 2 3 4 5 6
80

90

100

Tests

P
er

ce
nt

ag
e 

(%
)

 

 

Precision
Recall
Specificity
Accuracy

(b)

Fig. 4. Results for indoor testing with (a) non-overlapping views (b) overlapping views.

#72 of sequence 2. The target image is then sent to the SS and from there to
the TA for each of the six PETS2009 sequences. The target is therefore tracked
in all sequences as it moves across camera views. Of these video sequences, the
sequences 1, 2 and 3 and sequences 4, 5 and 6 are synchronised with each other,
which means that the nth frame in each sequence refers to the same instant in
time and it has a counterpart in the other two sequences (Fig. 5). It can be
observed from Fig. 5 how the target may not be visible at times in some of
the views (e.g. Fig. 5e), while it can still be tracked at the same time instant,
i.e. same frame number, in other views (e.g. Fig. 5b and 5h). This aspect is
fundamental for selecting the best view of a target, at any time.

Further, from numerical values in Fig. 6, it can be seen that the system has
high precision and specificity also in an outdoor setup, with only 4 False Positives
erroneously detected in all six sequences. In general, recall and accuracy are also
high (> 90%), apart from sequence 6, where the lower value of recall (83%) is
due to the fact that in this sequence the target walks away from the camera and
its size decreases to less than half of the original. In this case, the histogram of
the target changes significantly, resulting in a poor match and therefore a high
number of False Negatives. This second experiment indicates the effectiveness
of the proposed architecture, in terms of communication between SS and TAs,
also in an uncontrolled environment, such as outdoor sequences.

4.2 Best view selection and occlusion handling

In the proposed system, the DS receives information on tracking hits, i.e. camera
number n, target number ξ and match value λξn, from each TA which has found
the target in its FOV, and from this data it can select the best view of the target.
Therefore, it can produce a continuous video stream from multiple views, when
the selected target appears in the different FOVs of non-overlapping cameras
(Fig. 7). The current system implementation uses three IP cameras and for
testing purposes only, the DS shows the best view of the target, at the top of its
video output, and also the current feeds from the three cameras, at the bottom
(Fig. 7). In the three sets of camera feed subimages in Fig. 7, it can be seen
that the target (person in yellow) is sequentially detected in camera 1 (Fig. 7a),
camera 3 (Fig. 7b) and camera 2 (Fig. 7c).



(a) sequence 4, frame #479 (b) sequence 4, frame #507 (c) sequence 4, frame #716

(d) sequence 5, frame #479 (e) sequence 5, frame #507 (f) sequence 5, frame #716

(g) sequence 6, frame #479 (h) sequence 6, frame #507 (i) sequence 6, frame #716

Fig. 5. Synchronised images from PETS2009 sequences 4 (S2-L1-12.34-05), 5 (S2-L1-
12.34-06) and 6 (S2-L1-12.34-07) with correct target highlighted by tracking algorithm.
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Fig. 6. Precision, recall, specificity and accuracy for six PETS2009 sequences.

Moreover, the DS can use the tracking results from the TAs associated with
overlapping cameras, to select at any time the view with the highest TA match
λξn. Therefore the DS is able to easily solve the occlusion problem in overlapping
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Fig. 7. Three images from the DS: the system is able to switch between camera views
wherein the target is detected, to create a continuous video stream of the target.

best view: 1

1 2 3

Fig. 8. DS with best view selection: the target is occluded in view 3; partially occluded
in view 2; completely visible in view 1.

cameras, when the target is occluded in one of the views. As illustrated in Fig. 8,
the target is correctly tracked in views 1 (λξ1 = 76.4%) and 2 (λξ2 = 44.5%). As
view 1 gives higher λξn value, it is selected as best view among the three available
ones, and occlusion is implicitly solved.

5 Conclusion

In this paper a novel decentralised multi-camera tracking system architecture has
been presented. The proposed architecture is highly flexible and synchronisation
constraints on software and hardware can be relaxed. No positional informa-
tion is used to localise the target in multiple views, while only the knowledge
of occurrence of overlapping between views is required to initialise the trackers.
The colour-based IMS-SWAD tracking algorithm adopted in the current imple-
mentation demonstrate the effectiveness of the overall system in both indoor
and outdoor environments, in tracking a target over multiple overlapping and
non-overlapping views. It is expected that the presence of multiple objects with
colour similar to the chosen target may lead to wrong detection by the DA,



and therefore possible tracking loss. However, the IMS-SWAD itself can be ex-
panded to include other features, such as texture, which should help differentiate
between correct target and such other objects with similar colour. Nontheless,
the proposed multi-camera architecture would not require any modification. The
system is ideal in situations where video synchronisation and detailed knowledge
of cameras’ setup is not available.
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