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Abstract

Pride groups are defined by means of finite (simplicial) graphs

and examples include Artin groups, Coxeter groups and generalized

tetrahedron groups. Under suitable conditions we calculate an upper

bound of the first order Dehn function for a finitely presented Pride

group. We thus obtain sufficient conditions for when finitely presented

Pride groups have solvable word problems. As a corollary to our main

result we show that the first order Dehn function of a generalized

tetrahedron group, containing finite generalized triangle groups, is at

most cubic.

2000 Mathematics Subject Classification: 20F05, 20F06, 20F10

1 Introduction

An Artin group has a presentation of the form

〈a1, a2, . . . , an ; aiajai . . .︸ ︷︷ ︸
µij

= ajaiaj . . .︸ ︷︷ ︸
µji

for all i 6= j〉,

where µij = µji is an integer greater than or equal to 2 or µij = ∞, in

which case the relation involving ai and aj is omitted. Examples of Artin

1



groups include free groups, free abelian groups and braid groups. Indeed

Artin groups are sometimes referred to as generalized braid groups, the

latter introduced explicitly by Emil Artin in 1925. It is unknown in general

whether or not Artin groups have solvable word problems, however some

partial results do exist. If we add the defining relation ai = a−1
i for each

i = 1, . . . , n then we obtain the corresponding Coxeter group

〈a1, a2, . . . , an ; a2
i = 1, (aiaj)

µij = 1 for all i 6= j〉

and we say that an Artin group is spherical (or of finite type) if its corre-

sponding Coxeter group is finite. The word problem is solvable for spherical

Artin groups (see [7] and [4]). The word problem is also solvable for right-

angled Artin groups, where µij = 2 for all i 6= j. If µij ≥ 3 for all i 6= j

then the Artin group is said to be of large type. Following joint work with

Schupp, Appel [2] showed that such groups have solvable word problems.

Finally, Altobelli [1] proved that Artin groups of FC type have solvable

word problem. Artin groups of FC type can be characterized as the small-

est class of Artin groups which is closed under free products amalgamated

over special subgroups and which contain spherical Artin groups.

Artin groups, and their corresponding Coxeter groups, are but two ex-

amples of a much wider class of groups. Notice that in each of their pre-

sentations the defining relations involve at most two generators. Finitely

presented groups that have such presentations were first studied by Pride

in [12] and later in [15] under the title “groups given by presentations in

which each defining relator involves at most two types of generators.” It is

common to refer to such groups as simply Pride groups.

Let Γ = {V,E} be a finite simplicial graph with vertex set V and

edge set E. To each vertex v ∈ V assign a group Gv with a fixed finite

presentation. Let e = {u, v} ∈ E and let G̃e denote the free productGu∗Gv.

2



To each edge assign a set te that consists of cyclically reduced elements of

G̃e, where each element of te involves at least one term from each of Gu

and Gv. Associated to this edge is a group Ge = G̃e/ << te >>. The

Pride group associated with the above data is then

G = ∗
v∈V

Gv/ <<
⋃
e∈E

te >> .

We call Γ the underlying graph of G. The groups Gv (v ∈ V ) are called the

vertex groups of G and the groups Ge (e ∈ E) are called the edge groups of

G. Thus Artin groups are Pride groups with infinite cyclic vertex groups

and one-relator edge groups given by the presentation

〈ai, aj ; aiajai . . .︸ ︷︷ ︸
µij

= ajaiaj . . .︸ ︷︷ ︸
µji

〉.

Coxeter groups have Z2 vertex groups and dihedral edge groups. Further

examples include generalized tetrahedron groups (see Section 5) and groups

given by cyclic presentations.

For each v ∈ V and each e ∈ E there are natural homomorphisms

Gv → G and Ge → G. In general, these homomorphisms are not injective;

however, it was shown in [5] that if G satisfies the asphericity condition (see

end of this paragraph) then the vertex and edge groups embed in G. For

each e = {u, v} ∈ E let ψe be the natural epimorphism of G̃e onto Ge and

define me to be the (free product) length of a shortest non-identity element

of kerψe, when this is non-trivial. If kerψe is trivial then me := ∞. An

edge group Ge (or more precisely a given presentation of Ge) has property-

Wk if and only if me > 2k. So, for example, property-W1 states that no

non-empty word of the form W (u)W (v) where W (u) ∈ Gu, W (v) ∈ Gv is

equal to 1 in Ge. Then G satisfies the asphericity condition if and only if

Ge has property-W1 for each e ∈ E, and for any triangle in Γ (with edges
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e1, e2, e3, say)
1

me1

+
1

me2

+
1

me3

≤ 1

2
.

Pride groups which satisfy the asphericity condition are said to be non-

spherical.

Example ([13, Example 2] [8, Example 4.1]). Each edge group of an Artin

group satisfies property-Wµij−1 and each edge group of a Coxeter group

always satisfies property-W1 and satisfies property-W2 if µij > 2.

When the natural homomorphisms Gv → G (v ∈ V ) and Ge → G

(e ∈ E) are injective the aim is then to describe the structure of G in terms

of its vertex and edge groups. We conjecture that a non-spherical Pride

group has solvable word problem if each of its edge groups do. With this

in mind we prove the following result.

Theorem A. Let G be a Pride group for which one of the following two

conditions hold.

1. Each edge group has property-W2.

2. Each edge group has property-W1 and the underlying graph of G is

triangle-free.

Then, if each vertex group is finite, G has a solvable word problem.

We will compute an upper bound for the first order Dehn function of G

and show that it is given in terms of the maximum of the first order Dehn

functions of its edge groups. To do this we will estimate the areas of

simply-connected pictures over a particular presentation of a Pride group.

In particular, we will use the following pictorial version of van Kampen’s

Lemma: Let P = 〈x ; r〉 be a finite presentation defining a group G and let

4



W be a word on x±1. Then W represents the identity element of G if and

only if there exists a simply-connected picture for W over P.

2 Pictures

A closed punctured disc Π with n ≥ 0 holes is the closure of

D −
n⋃
i=1

int(Bi),

where D is a closed disc and B1, . . . , Bn are disjoint closed discs in the

interior of D. The boundary ∂Π of Π is

∂D ∪
n⋃
i=1

∂Bi,

where ∂D and ∂Bi are the boundaries of D and Bi (i = 1, . . . , n), respec-

tively.

Definition 1. A picture P is a geometric configuration consisting of a finite

collection of pairwise disjoint closed discs ∆1, . . . ,∆m in a closed punctured

disc Π with n ≥ 0 holes, together with a finite collection of pairwise disjoint

compact one-manifolds α1, . . . , αk (the arcs of P) properly embedded in

Π−
m⋃
i=1

int(∆i).

The punctured disc Π has a basepoint 0 on ∂Π, each disc Bi has a basepoint

bi on ∂Bi, and each disc ∆i has a basepoint 0i on ∂∆i. Each arc is either

a simple closed curve having trivial intersection with ∂Π
⋃m
i=1 ∂∆i or is a

simple curve which joins two points of ∂Π
⋃m
i=1 ∂∆i, neither point being a

basepoint.

If Π does not contain any holes then we say P is simply-connected.

Otherwise P is non-simply-connected. Our definition of a simply-connected
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picture coincides with the standard definition of a picture (e.g. in [14]) and

we shall use the terms “simply-connected picture” and “picture” to mean

the same. A picture P is spherical if no arc of P meets the boundary of P,

where the boundary of P is ∂P := ∂Π.

We shall assume the reader is familiar with the theory of pictures over

finite presentations (see [14]) but note that a picture P over a finite presen-

tation P = 〈x , r〉 satisfies the following conditions.

(a) Each arc of P is labelled by an element of x and has a normal orien-

tation indicated by a short arrow meeting the arc transversely.

(b) If we travel around ∆i once in an anticlockwise direction starting at 0i

and read off labels on the arcs encountered (with the understanding

that we read x if we cross an arc labelled x in the direction of its

normal orientation, and we read x−1 otherwise) then we obtain a

word rεii , where ri ∈ r and εi = ±1.

Let W be a word on x±1. We say that P is a simply-connected r-

picture for W (or simply a picture for W ) if the boundary label of P,

i.e. the word obtained by reading the labels of arcs encountered in an

anticlockwise transversal of the boundary beginning and ending at 0, is a

cyclic permutation of W . The area A(W ) of W is then defined to be the

minimum of the areas of all pictures for W . Recall that the area A(P) of P

is the number of discs contained in P.

Definition 2. The first order Dehn function of P is the increasing function

δP : N→ N given by δP = max{A(W ) : l(W ) ≤ n and W = 1 in G}, where

W denotes the group element defined by W and l(W ) denotes the length

of W .
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If P is finite then δP is a group invariant up to ∼-equivalence and we write

δG for the first order Dehn function of G = (G(P)). The ∼-equivalence is

defined as follows. For two increasing functions f, g : N→ R+ write f � g

if there exist constants c1, c2, c3 > 0 such that

f(n) ≤ c1g(c2n) + c3.

Then f ∼ g if and only if f � g and g � f . It is well known that a

finitely presented group has a solvable word problem if and only if its Dehn

function is recursive (see e.g. [9]).

Let P be a picture. The degree of a disc ∆ is defined to be the number of

arcs incident with ∆, counted with mutliplicity, and we denote it by d(∆).

The degree of an interior region R of P is defined to be the number of arcs

contained in the boundary of R counted with multiplicity. We denote the

degree of R by d(R).

Lemma 1. Let P be a picture in which d(∆) ≥ 6 for all discs ∆ of P and

d(R) ≥ 3 for all interior regions R of P. If n arcs are incident with ∂P,

then d(∆) is at most n+ 3 for each ∆ ∈ P.

Proof. We proceed by induction on A(P). Let C be a connected component

of P. If A(C) = 1 then delete C and its arcs incident with ∂P to obtain

a picture P′. Now A(P′) < A(P) and there at most n − 1 arcs incident

with ∂P′. It follows that d(∆′) < n+ 3 for each disc ∆′ ∈ P′. Furthermore

d(C) < n.

Now suppose that each connected component contains at least two discs.

Let D be the dual diagram of P so that the discs of P become regions of D

and interior regions of P become the vertices of D. By our hypotheses D

satisfies the conditions of [11, Theorem V 4.3] and so must satisfy
∗∑
D

(4− i(R)) ≥ 6,
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where the sum is taken over boundary regions R of D such that ∂D ∪ ∂R

is a consecutive part of ∂D. Thus D must contain at least two regions that

are both boundary regions and each contain at most 3 interior edges, and

whose boundaries form a consecutive part of ∂D. Translating this back into

the language of pictures we deduce that P contains a connected component

C that must contain at least two discs which satisfy the following:

- both discs are boundary discs of C;

- each disc has at most three interior arcs;

- the boundary arcs of each disc form a consecutive part of ∂C.

Since C can contain at most one disc whose boundary is a consecutive part

of ∂C but not of ∂P, it follows that P must contain at least one disc ∆

that satisfies the above conditions. Delete ∆ and its boundary arcs from

P to obtain a picture P′ with A(P′) < A(P). Since ∆ contained at most

three interior arcs and since d(∆′) ≥ 6 for each disc ∆′ of P, we deduce

that ∂P′ contains at most n arcs. The induction hypothesis applies to P′

so d(∆′) ≤ n+ 3 for each disc ∆′ ∈ P′. Moreover, d(∆) ≤ n+ 3. The result

now follows.

A very similar argument proves the following lemma.

Lemma 2. Let P be a picture in which d(∆) ≥ 4 for all discs ∆ of P and

d(R) ≥ 4 for all interior regions R of P. If n arcs are incident with ∂P,

then d(∆) is at most n+ 2 for each ∆ ∈ P.

Let I be a fixed set whose elements shall be referred to as colours and

let {mij : i, j ∈ I} be a fixed family of elements of N ∪ {∞} such that

mij = mji and mij ≥ 4 for i 6= j. Following [5], we say that a triple of

8



distinct colours i, j, k ∈ I is a spherical triple if

1

mij
+

1

mjk
+

1

mki
>

1

2
,

where 1/∞ := 0, and a colouring of a picture P by I is an I-valued function

on the set of arcs of P. A picture together with a colouring function into I

is called an I-coloured picture.

Lemma 3 ([5, Lemma 2.2]). Suppose I does not contain any spherical

triples and let P be a non-spherical simply-connected I-coloured picture sat-

isfying:

(i) no arc is a floating circle nor has both endpoints on the same disc

enclosing a region of degree 1;

(ii) associated to each disc ∆ are two distinct colours i, j ∈ I (with mij 6=

∞) such that each arc incident with ∆ is coloured either i or j and

there are at least mij corners of ∆ joining one arc of each colour;

(iii) no interior region has more than one corner in its boundary joining

arcs of the same two distinct colours.

If under the above conditions some arc of P is coloured k, then some arc

meeting ∂P is coloured k.

3 Pictures over presentations of Pride groups

Let G be a Pride group in which each vertex group is finite. We will now

fix a presentations for G that will be used for the remainder of this paper.

For each v ∈ V let xv be a set that is in one-to-one correspondence with

the elements of Gv and define

rv = {x1x2x
−1
3 ;x1, x2, x3 ∈ xv},
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where each xi (i = 1, 2, 3) corresponds to a group element gi ∈ Gv such

that g3 = g1g2. Then Pv = 〈xv ; rv〉 is a finite presentation for Gv. Note

that rv is simply the multiplication table of Gv. For each e = {u, v} ∈ E

let xe = xu ∪ xv and let

re = ru ∪ rv ∪ se,

where se is a set of cyclically reduced words on x±1
e that represent the

elements of te. Then Pe = 〈xe ; re〉 is a presentation for Ge and

P = 〈x ; r〉

is a finite presentation for G, where

x =
⋃
v∈V

xv and r =
⋃
e∈E

re.

Let P be a picture over P. There exists an obvious colouring of P by

V : arcs labelled by an element of xv (v ∈ V ) are coloured v. For each pair

of vertices u, v ∈ V define

muv =

 me if {u, v} = e ∈ E;

∞ if {u, v} /∈ E.

Clearly muv = mvu and if G is non-spherical, then each Ge has property-W1

and so me > 2. It follows that muv ≥ 4 for u 6= v since me is even for each

e ∈ E. Thus we may view P as a V -coloured picture and it is easy to see

that, when viewed as a set of colours, V cannot contain a spherical triple.

A (u, v)-subpicture of P is a subpicture in which each arc has colour u

or colour v (u, v ∈ V ) only.

Definition 3. A federation F is a (u, v)-subpicture that satisfies the fol-

lowing conditions: {u, v} = e for some edge e ∈ E; F contains at least one

disc whose label is an element of se (i.e. F does not consist solely of discs
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whose labels are from ru ∪ rv); F is maximal in the sense that ∂F cannot

be extended to include any other disc of P whose label is an element of se.

Define Σ(F) = e if F contains an se-disc. A federation is simply-

connected if it is a simply-connected (u, v)-subpicture, otherwise it is non-

simply-connected. If F is simply-connected and Σ(F) = e, then the bound-

ary label W (F) of F is a word on x±1
e that represents the identity element

of Ge. Equivalently, W (F) represents an element of kerψe.

Let F1 be a federation of P. If F1 6= P, then construct a federation F2 of

P\F1. If F2 6= P\F1, then construct a federation F3 of P1\(F1 ∪ F2), and so

on. Eventually we end up with a collection of federations F1, . . . ,Fn that

cover P and satisfy the property that Fi+1 is a federation of

P \

 i⋃
j=1

Fj

 (i = 1, . . . , n− 1).

As in [15] we call this collection of federations a federal subdivision of P

and denote it by F .

For each e ∈ E let Ωe denote the set of all words on x±1
e that represent

a non-identity element of kerψe. Denote the union of {Ωe : e ∈ E} by Ω.

Let P be a connected picture and suppose F is a federal subdivision of P

that satisfies the following two conditions:

(I) each F ∈ F is simply-connected;

(II) W (F) ∈ Ω for each F ∈ F .

The derived picture P̂ of P corresponding to F (or simply the derived pic-

ture) is obtained from P by deleting the arcs and discs contained in each

federation F ∈ F . If α is a boundary arc of F, then we delete only that

portion of α contained in F. The boundary of F is then identified as the
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boundary of a disc of P̂. It is clear that P̂ is a V -coloured picture and that

W (P̂) is identically equal to W (P), where W (P) is the boundary label of P.

Furthermore, the label of a disc ∆ obtained from a federation F is identical

to W (F) and so is an element of Ωe.

The following result appears in [6, Lemma 3.3]. The presentation in the

present paper differs from that in [6], however this does not affect the proof

of the lemma.

Lemma 4. Let P be a connected, non-spherical, simply-connected picture

over P and let P̂ be the derived picture corresponding to a federal subdivision

of P. Then P̂ satisfies Conditions (i), (ii) and (iii) of Lemma 3.

Let

s =
⋃
e∈E

se

and let P be a picture for a word W that contains k s-discs, i.e. each of the

k discs is labelled by an element of s. We shall say that P is minimal with

respect to s if, for any picture P′ for W that contains l s-discs, then k ≤ l.

Lemma 5. Let W be a word on x±1
e that represents a non-identity element

of kerψe and let P be a picture for W that is minimal with respect to s.

Then P is a picture over Pe.

Proof. Suppose P is not a picture over Pe and let F be a federal subdivision

of P. If each F ∈ F is simply-connected then the boundary label of F cannot

be freely equal to the empty word nor represent the trivial element of G̃e for

some e ∈ E. Otherwise, we would replace F with either the empty picture,

by performing bridge moves on ∂F, or a picture over P̃e to obtain a picture

P′ for W that contains strictly less s-discs than P, thus contradicting the

minimality of P. It follows that the boundary label of each federation must
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be an element of Ωe. Thus we may construct the derived picture P̂, which,

by Lemma 4, satisfies the conditions of Lemma 3. Since P is not a picture

over Pe, P̂ must contain an arc coloured k such that this colour does not

appear on the boundary of P̂. However, this contradicts the conclusion of

Lemma 3. We deduce that P must be a picture over Pe.

Now suppose that F contains at least one non-simply-connected fed-

eration F. We may assume that F is innermost, meaning that no other

non-simply-connected federation is bounded by F. The simply-connected

picture bounded by F is minimal with respect to s (by the minimality of

P) and must have two colours appearing on its boundary. We deduce that

this simply-connected picture and F are both pictures over Pe (for some

e ∈ E) contradicting the fact that F is a maximal subpicture. The result

now follows.

The next result follows easily from the previous lemma.

Lemma 6. Let W be a word on x±1 that represents the identity element of

G and let P be a simply-connected picture for W that is minimal with respect

to s. Then any federal subdivision of P contains only simply-connected

federations.

Proof. The second part of the proof of Lemma 5 applies directly.

We end this section with a description of some modifications that can

be carried out on a derived picture. These are pictorial versions of dia-

grammatic modifications that originally appeared in [12]. The first is the

standard modification of removing all interior regions of degree 2 (see Fig-

ure 1). Both arcs of an interior region of degree 2 must have the same

colour, i.e. xi, xj ∈ xv for some v ∈ V . Replace these arcs with a single arc
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labelled x ∈ xv such that

x = xεii x
εj
j ,

where εi, εj = ±1 depending on the orientation of the corresponding arcs

xi, xj .

ix xj

Figure 1: Interior region of degree 2

The second modification removes interior regions of degree 3 whose

boundary arcs are each of the same colour.

xi

xk

xj

1

23

Figure 2: Interior region of degree 3

Adjoin new arcs between discs 1 and 2, and 1 and 3 as in Figure 3. Label

these arcs with the label on the arc incident with discs 2 and 3, and assign

the same orientation as this arc. Finally delete the arc joining discs 2 and 3.

The label of disc 1 has changed, however it remains an element of Ω. Also

we have created new interior regions of degree 2 which must be removed.
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xi xj

xk

xk

1

23

Figure 3: Adjoing new arcs.

A consequence of these modifications is that if W is the label of a

transverse path α in P̂ then l(W ) is equal to the number of arcs intersected

by α (counted with multiplicity). In particular, the boundary label of each

disc of P̂ has length equal to the degree of the disc.

Note that if Γ is triangle-free then P̂ cannot contain any interior regions

of degree 3 whose boundary arcs each have distinct colours from one an-

other. In such a region we would have xi ∈ xu, xj ∈ xv, xk ∈ xw for some

distinct u, v, w ∈ V , i.e. {xi, xj , xk} would form a triangle in Γ.

4 First order Dehn function

Let G be a Pride group in which each vertex group is finite and define

δE = max{δGe : e ∈ E},

where δGe is the first order Dehn function of the edge group Ge.

Proposition B. If each edge group has property-W2, or has property-W1

and the underlying graph of G is triangle-free, then

δG(n) � n2δE(n)

for all n ∈ N.
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Proof. Suppose that each Ge has property-W2. Let W be a non-empty

word of length n on x±1 that represents the identity element of G. We may

assume, without loss of generality, that W is cyclically reduced. By the

van Kampen Lemma, there exists a simply-connected picture P for W that

is minimal with respect to s. Let k denote the number of s-discs of P.

If k = 0 or k = 1 then P is either a picture over Pv or a picture over

Pe for some v ∈ V or e ∈ E. In both cases A(W ) ≤ δE(n). Assume that

k > 1 and let F be a federal subdivision of P. If F contains only one

federation then A(W ) ≤ δE(n), so assume that F contains at least two

federations. Each federation of F must, by Lemma 6, be simply-connected

and the boundary label must be an element of Ω. Otherwise, we would

argue as in the proof of Lemma 5 to contradict the minimality of P with

respect to s.

Let P̂ be the derived picture corresponding to F . Since each Ge has

property-W2 each disc of P̂ must have degree at least 6. Furthermore, we

may assume that each interior region has degree at least 3 by removing all

interior regions of degree 2 as detailed at the end of Section 3. It follows

from [3, Theorem 3.6 p. 182] that there exists a constant c > 0 such that

A(P̂) ≤ c · d(P̂)2,

where d(P̂) is the degree of P̂. Since d(P̂) ≤ l(W ) we have

A(P̂) ≤ c · n2.

The degree of each disc ∆ of P̂ is at most n + 3 by Lemma 1. It

follows that if U ∈ (x±1
e )∗ is the label of ∆, then |U | ≤ n + 3 by the

italicized comment appearing at the end of Section 3. Since U represents

a non-identity element of kerψe, there exists a minimal simply-connected
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re-picture P∆ for U such that

A(P∆) ≤ δGe(|U |) = δGe(n+ 3).

We now replace ∆ with P∆ as follows. First, surround ∆ with a circle S1 in

such a way that S1 is transverse to the arcs incident with ∆ and does not

intersect any other arc of P. Next delete ∆ and the arcs contained in S1

which are incident with ∆ and in their place add P∆. Finally, join together

the boundary arcs of P∆ and the arcs of P which meet S1 in such a way

that no two arcs cross each other and only arcs of like label and orientation

are joined. We proceed to replace the remaining discs of P̂ in the same way.

In doing so we obtain a simply-connected picture P′ for W with

A(P′) ≤M · c · n2,

where M = max{A(P∆)} with the maximum taken over all discs ∆ of P̂.

Since M = δE(n+ 3) we have

A(W ) ≤ A(P′) ≤ c · n2δE(n+ 3).

If each Ge satisfies property-W1 and the underlying graph is triangle-

free, then we modify P̂ to remove all interior regions of degree 3 and then

use Lemma 2 to show that

A(W ) ≤ c · n2δE(n+ 2).

The statement of the result then follows.

5 Generalized tetrahedron groups

Generalized tetrahedron groups are defined by the presentation

〈x, y, z ;xl, xm, xn, w1(x, y)p, w2(y, z)q, w3(z, x)r〉,
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where each wi(a, b) (i = 1, 2, 3) is a cyclically reduced word involving both

a and b and all powers are integers greater than 1. We observe that a

generalized tetrahedron group T is a Pride group with finite vertex groups

(cyclic of orders l,m, n) and generalized triangle edge groups. It was shown

in [10, Theorem 3.2] that the generalized triangle group

4 = 〈x, y ;xl, ym, w(x, y)P 〉,

where w ≡ xα1yβ1 . . . xαkyβk (1 ≤ αi < l, 1 ≤ βi < M), satisfies me = pk.

Thus, considered as an edge group of T , 4 has property-W1 if k ≥ 2 and

property-W1 if k > 2. It follows that 4 embeds in T if k > 2 and, in this

case, T has a solvable word problem precisely when each of its generalized

triangle groups do. In particular, if each 4 is finite, then δT (n) � n3.

Acknowledgements I thank the referee for his/her helpful comments in

improving the readability of this paper.
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