Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft

Jones, C. E. and Norman, P. J. and Galloway, S. J. and Burt, G. M. and Kawashita, L. F. and Jones, M. I. and Hallett, S. R. (2016) Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft. In: 18th European Conference on Power Electronics and Applications, 2016-09-05 - 2016-09-09, Karlsruhe Town Hall. (In Press)

[img]
Preview
Text (Jones-etal-EPE2016-Electrical-model-of-carbon-fibre-reinforced-polymers)
Jones_etal_EPE2016_Electrical_model_of_carbon_fibre_reinforced_polymers.pdf - Accepted Author Manuscript

Download (855kB) | Preview

Abstract

Carbon fibre reinforced polymers (CFRP) are increasingly used for structures on aircraft due to their superior mechanical properties compared to traditional materials, such as aluminium. Additionally, in order to improve aircraft performance, there is a continued trend for electrically driven loads on aircraft, increasing the on-board electrical power generation capacity and complexity of the electrical power system, including a desire to increase voltage levels and move towards DC distribution systems. Central to the reliable operation of an electrical power system is the development of an appropriate protection and fault management strategy. If an electrical earth fault occurs on a composite more-electric aircraft then the CFRP may form part of the route to ground. In order to develop an appropriate protection system and thus to understand the effects on engine generators it is necessary to investigate the fault response of this network. Hence a suitable electrical model of the CFRP material is required, which will enable CFRP to be included in a computationally-intensive systems-level simulation study of a more-electric aircraft (MEA) with fully switching power electronic converter models. This paper presents an experimentally validated impedance model of CFRP at an appropriate level of fidelity for use in systems level simulation platforms, enabling appropriate protection methods to be developed. The validated model considers the impact of the electrical bonding to ground, including the impedance added by a metallic frame that a CFRP panel may be mounted in. The simplicity of the model results in a less complex process to determine the expected impedance of the CFRP material, enabling a focus on the fault response of the system and subsequent development of appropriate protection solutions.