Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

Mckeeman, I and Fusiek, G and Perry, M and Johnston, M and Saafi, M and Niewczas, P and Walsh, M and Khan, S (2016) First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors. Smart Materials and Structures, 25 (9). ISSN 0964-1726

[img] Text (McKeeman-etal-SMS2016-Measuring-concrete-prestress-levels-with-metal-packaged-fibre-optic-sensors)
McKeeman_etal_SMS2016_Measuring_concrete_prestress_levels_with_metal_packaged_fibre_optic_sensors.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 24 August 2017.

Download (10MB) | Request a copy from the Strathclyde author

Abstract

In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.