A Theoretical Study of Two-Period Relaxations for Lot-Sizing Problems with Big-Bucket Capacities

Kerem Akartunalı

Dept. of Management Science, University of Strathclyde, Glasgow, UK

kerem. akartunali@strath. ac.uk

Mahdi Doostmohammadi

Dept. of Management Science, University of Strathclyde, Glasgow, UK

mahdi.doostmohammadi@strath.ac.uk

Ioannis Fragkos

HEC Montréal, Canada

ioannis.fragkos@hec.ca

Abstract

In this paper, we study two-period subproblems proposed by [1] for lot-sizing problems with big-bucket capacities and nonzero setup times, complementing our previous work [3] investigating the special case of zero setup times. In particular, we study the polyhedral structure of the mixed integer sets related to various two-period relaxations. We derive several families of valid inequalities and investigate their facet-defining conditions. We also discuss the separation problems associated with these valid inequalities.

1 Introduction

In this study, we investigate multi-item production planning problems with big bucket capacities, i.e., each resource is shared by multiple items, which can be produced in a specific time period. These real-world problems are very interesting, as they remain challenging to solve to optimality and also to achieve strong bounds. The uncapacitated and single-item relaxations of the problem have been previously studied by [7]. The work of [6] introduced and studied the single-period relaxation with "preceding inventory", where a number of cover and reverse cover inequalities are defined for this relaxation. Finally, we also note the relevant study of [5], who studied a single-period relaxation and compared with other relaxations.

We present a formulation for this problem following the notation of [2]. Let NT, NI and NK indicate the number of *periods*, *items*, and *machine types*, respectively. We represent the production, setup, and inventory variables for item i in period t by x_t^i , y_t^i , and s_t^i , respectively. We note that our model can be generalized to involve multiple levels as in [1], however, we omit this for the sake of simplicity.

$$\min \sum_{t=1}^{NT} \sum_{i=1}^{NI} f_t^i y_t^i + \sum_{t=1}^{NT} \sum_{i=1}^{NI} h_t^i s_t^i$$
 (1)

s.t.
$$x_t^i + s_{t-1}^i - s_t^i = d_t^i$$
 $t \in \{1, \dots, NT\}, i \in \{1, \dots, NI\}$ (2)

$$\sum_{i=1}^{NI} (a_k^i x_t^i + ST_k^i y_t^i) \le C_t^k \qquad t \in \{1, \dots, NT\}, k \in \{1, \dots, NK\}$$
 (3)

$$x_t^i \le M_t^i y_t^i$$
 $t \in \{1, \dots, NT\}, i \in \{1, \dots, NI\}$ (4)

$$y \in \{0, 1\}^{NT \times NI}; x, s \ge 0$$
 (5)

The objective function (1) minimizes total cost, where f_t^i and h_t^i indicate the setup and inventory cost coefficients, respectively. The flow balance constraints (2) ensure that the demand for each item i in period t, denoted by d_t^i , is satisfied. The big bucket capacity constraints (3) ensure that the capacity C_t^k of machine k is not exceeded in time period t, where a_k^i and ST_k^i represent the per unit production time and setup time for item i, respectively. The constraints (4) guarantee that the setup variable is equal to 1 if production occurs, where M_t^i represents the maximum number of item i that can be produced in period t, based on the minimum of remaining cumulative demand and capacity available. Finally, the integrality and non-negativity constraints are given by (5).

2 Two-Period Relaxation

Let $I = \{1, ..., NI\}$. We present the feasible region of a two-period, single-machine relaxation of the multi-item production planning problem, denoted by X^{2PL} (see [1] for details).

$$x_{t'}^{i} \le \widetilde{M}_{t'}^{i} y_{t'}^{i}$$
 $i \in I, t' = 1, 2$ (6)

$$x_{t'}^{i} \le \widetilde{d}_{t'}^{i} y_{t'}^{i} + s^{i}$$
 $i \in I, t' = 1, 2$ (7)

$$x_1^i + x_2^i \le \widetilde{d}_1^i y_1^i + \widetilde{d}_2^i y_2^i + s^i \qquad i \in I$$
 (8)

$$x_1^i + x_2^i \le \widetilde{d}_1^i + s^i \qquad i \in I \tag{9}$$

$$\sum_{i \in I} (a^i x_{t'}^i + ST^i y_{t'}^i) \le \widetilde{C}_{t'} \qquad t' = 1, 2$$
 (10)

$$x, s \ge 0, y \in \{0, 1\}^{2 \times NI} \tag{11}$$

Since we consider a single machine, we dropped the k index from this formulation, however, all parameters are defined in the same lines as before. The obvious choice

for the horizon would be t+1, in which case the definition of the parameter $\widetilde{M}_{t'}^i$ is the same as of the basic definition of $M_{t+t'-1}^i$, for all i and t'=1,2. Similarly, capacity parameter $\widetilde{C}_{t'}$ is the same as $C_{t+t'-1}$, for all t'=1,2. Cumulative demand parameter $\widetilde{d}_{t'}^i$ represents simply $d_{t+t'-1, t+1}^i$, for all i and t'=1,2, i.e., $\widetilde{d}_1^i=d_{1,2}^i$ and $\widetilde{d}_2^i=d_2^i$. We note the following polyhedral result for X^{2PL} from [1].

Proposition 2.1 Assume that $\widetilde{M}_t^i > 0, \forall t \in \{1, ..., NT\}, \forall i \in \{1, ..., NI\}$ and $ST^i < \widetilde{C}_t, \forall t \in \{1, ..., NT\}, \forall i \in \{1, ..., NI\}$. Then $conv(X^{2PL})$ is full-dimensional.

For the sake of simplicity, we will drop subscript t and symbol $\tilde{}$ in the following notations. In this paper, we investigate the case of $a^i=1, \forall i\in\{1,\ldots,NI\}$ with nonzero setups. We establish two relaxations of X^{2PL} and study their polyhedral structures. For a given t, we define the first relaxation of X^{2PL} , denoted by LR1, as set of $(x,y)\in\mathbb{R}^{NI}\times\mathbb{Z}^{NI}$ satisfying

$$\begin{aligned} x^i &\leq M^i y^i, i \in I \\ \sum_{i=1}^{NI} (x^i + ST^i y^i) &\leq C \\ x^i &\geq 0, y^i \in \{0,1\}, i \in I \end{aligned}$$

Next, we present a result from the literature [4] concerning this relaxation.

Definition 2.1 Let $S_1 \subseteq I$ and $S_2 \subseteq I$ such that $S_1 \cap S_2 = \emptyset$. We say that (S_1, S_2) is a generalized cover of I if $\sum_{i \in S_1} (M^i + ST^i) + \sum_{i \in S_2} ST^i - C = \delta > 0$.

Proposition 2.2 (see [4]) Let (S_1, S_2) be a generalized cover of I, and let $L_1 \subseteq I \setminus (S_1 \cup S_2)$ and $L_2 \subseteq I \setminus (S_1 \cup S_2)$ such that $L_1 \cap L_2 = \emptyset$. Then,

$$\sum_{i \in S_1 \cup L_1} x^i + \sum_{i \in S_1 \cup S_2 \cup L_1 \cup L_2} ST^i y^i - \sum_{i \in S_1} (M^i + ST^i - \delta)^+ y^i - \sum_{i \in S_2} (ST^i - \delta)^+ y^i - \sum_{i \in S_2} (\overline{T}^i - \delta)^+ y^i$$

is valid for LR1, where $A \ge \max(\max_{i \in S_1}(M^i + ST^i), \max_{i \in S_2} ST^i, \delta)$, $\overline{q}^i = \max(A, M^i + ST^i)$, and $\overline{ST}^i = \max(A, ST^i)$.

For a given t, second relaxation of X^{2PL} , denoted by LR2, can be defined as the set of $(x, y, s) \in \mathbb{R}^{NI} \times \mathbb{Z}^{NI} \times \mathbb{R}^{NI}$ satisfying

$$x^{i} \leq M^{i}y^{i}, i \in I$$

$$x^{i} \leq d^{i}y^{i} + s^{i}, i \in I$$

$$\sum_{i=1}^{NI} (x^{i} + ST^{i}y^{i}) \leq C$$

$$x^{i} \geq 0, y^{i} \in \{0, 1\}, s^{i} \geq 0, i \in I$$

In this talk, we will present the trivial facet-defining inequalities for LR2, and then derive several classes of valid inequalities such as cover and partition inequalities. We will also present item- and period-extended versions of some of these families of inequalities, and we will establish facet-defining conditions for all families of inequalities. We will also discuss the separation problems associated with these valid inequalities.

References

- [1] K. Akartunalı, I. Fragkos, A.J. Miller and T. Wu, Local cuts and two-period covex hull closures for big bucket lot-sizing problems, Technical Report, Dept. of Management Science, University of Strathclyde, Available at Optimization Online, http://www.optimization-online.org/DB_HTML/2014/07/4423.html (2014).
- [2] K. Akartunalı and A.J. Miller, A computational analysis of lower bounds for big bucket production planning problems, Computational Optimization and Applications, 53, 729-753 (2012).
- [3] M. Doostmohammadi and K. Akartunalı, A Polyhedral Study of Two-Period Relaxations for Big-Bucket Lot-Sizing Problems: Zero Setup Case, Technical Report, Dept. of Management Science, University of Strathclyde, Available at Optimization Online, http://www.optimization-online.org/DB_HTML/2015/02/4767.html (2015).
- [4] M. Goemans, Valid inequalities and separation for mixed 0-1 constraints with variable upper bounds, Operations Research Letters, 8, 315-322 (1989).
- [5] R. Jans and Z. Degraeve, Improved lower bounds for the capacitated lot sizing problem with setup times, Operations Research Letters, 32, 185-195 (2004).
- [6] A.J. Miller, G.L. Nemhauser and M.W.P. Savelsbergh, Solving multi-item capacitated lot-sizing problems with setup times by branch-and-cut, Technical report CORE DP 2000/39, Université Catholique de Louvain, Louvain-la-Neuve (2000).
- [7] Y. Pochet, Valid inequalities and separation for capacitated economic lot-sizing, Operations Research Letters, 7, 109-116 (1988).