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Abstract

In this paper, we study two-period subproblems proposed by [1] for lot-sizing
problems with big-bucket capacities and nonzero setup times, complementing
our previous work [3] investigating the special case of zero setup times. In
particular, we study the polyhedral structure of the mixed integer sets related
to various two-period relaxations. We derive several families of valid inequalities
and investigate their facet-defining conditions. We also discuss the separation
problems associated with these valid inequalities.

1 Introduction

In this study, we investigate multi-item production planning problems with big bucket
capacities, i.e., each resource is shared by multiple items, which can be produced
in a specific time period. These real-world problems are very interesting, as they
remain challenging to solve to optimality and also to achieve strong bounds. The
uncapacitated and single-item relaxations of the problem have been previously studied
by [7]. The work of [6] introduced and studied the single-period relaxation with
“preceding inventory”, where a number of cover and reverse cover inequalities are
defined for this relaxation. Finally, we also note the relevant study of [5], who studied
a single-period relaxation and compared with other relaxations.

We present a formulation for this problem following the notation of [2]. Let NT,
NI and N K indicate the number of periods, items, and machine types, respectively.
We represent the production, setup, and inventory variables for item ¢ in period ¢ by
zi, yi and si, respectively. We note that our model can be generalized to involve
multiple levels as in [1], however, we omit this for the sake of simplicity.
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NT NI NT NI

min Z Z fiyt + Z Z his (1)

t=1 i=1 t=1 i=1

st. 2l +s, —si=d te{l,...,NT},ie{l,...,NI} (2)
NI
> (ahai + STiyi) < Cf te{l,...,NTY, ke {l,...,.NK} (3)
=1
zi < Miy! te{l,...,NT},ie{l,...,NI} (4)
y € {0, 1YV a5 > 0 (5)

The objective function (1) minimizes total cost, where f; and h indicate the setup
and inventory cost coefficients, respectively. The flow balance constraints (2) ensure
that the demand for each item 7 in period ¢, denoted by d:, is satisfied. The big bucket
capacity constraints (3) ensure that the capacity C¥ of machine k is not exceeded in
time period ¢, where a} and ST} represent the per unit production time and setup
time for item 4, respectively. The constraints (4) guarantee that the setup variable is
equal to 1 if production occurs, where M} represents the maximum number of item
1 that can be produced in period ¢, based on the minimum of remaining cumulative
demand and capacity available. Finally, the integrality and non-negativity constraints
are given by (5).

2 Two-Period Relaxation

Let I ={1,...,NI}. We present the feasible region of a two-period, single-machine
relaxation of the multi-item production planning problem, denoted by X?PZ (see [1]
for details).

xl, < Myl et =1,2 (6)
ol < diyl, + ielt' =12 (7)
vi +2h < dyyi + dyyh + 5 iel (8)
ool <d 45 icl (9)
Z(ai:ﬁi/ + STyl < Cy t'=1,2 (10)
el

z,8 >0,y € {0,1}>N (11)

Since we consider a single machine, we dropped the k£ index from this formulation,
however, all parameters are defined in the same lines as before. The obvious choice
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for the horizon would be t+ 1, in which case the definition of the parameter JE’} is the
same as of the basic definition of M/ w1, for all ¢ and ¢ = 1,2. Similarly, capacity
parameter 6}/ is the same as Cy,y_1, for all ¢ = 1,2. Cumulative demand parameter
CE, represents simply dj ,_, ,,, for all 4 and ' = 1,2, i.e., di = d 5 and di, = di. We
note the following polyhedral result for X2°% from [1].

Proposition 2.1 Assume that ]\7/; > 0,vt € {1,...,NT},Vi € {1,...,NI} and
ST < Cy,Vt € {1,...,NT},Vi € {1,...,NI}. Then conv(X*'") is full-dimensional.
For the sake of simplicity, we will drop subscript ¢ and symbol ~ in the following
notations. In this paper, we investigate the case of a* = 1,Vi € {1,..., NI} with
nonzero setups. We establish two relaxations of X% and study their polyhedral
structures. For a given ¢, we define the first relaxation of X2P* denoted by LR1, as
set of (z,y) € RN x ZN! satisfying
o < My'iel
NI
z:(atZ + STy < C
i=1
' >0,y €{0,1},iel
Next, we present a result from the literature [4] concerning this relaxation.

Definition 2.1 Let S; C I and Sy C I such that S; N Sy = 0. We say that (Sy, S2)
is a generalized cover of I if 3, .q (M'+ ST") + 3,5 ST'—C =6 > 0.

Proposition 2.2 (see [4]) Let (Si,S2) be a generalized cover of I, and let Ly C
I\(S1 U S3) and Ly C I\(S1 U Ss) such that Ly N Ly = (0. Then,

Z ' + Z STy — Z(]WZ + ST — 8§ty — Z(STi — )ty

i€S1ULy 1€S1USoUL1ULo €51 i€ES2
=Y @ =08y =Y (ST =)y <C =) (M +ST" = 5)" =) (ST" = 6)*
i€l i€Lo €51 1€Ss

is valid for LR1, where A > max(max;eg, (M*+ST?), max;es, ST, ), ¢ = max(A, M*+
ST, and ST = max(A, ST?).
For a given t, second relaxation of X2PL, denoted by LR2, can be defined as the

set of (z,y,s) € RV x ZNT x RN satisfying

< Myl iel

e <dy+siel

NI

(@' + STy < C

=1

>0,y €{0,1},s">0,icl



In this talk, we will present the trivial facet-defining inequalities for LR2, and
then derive several classes of valid inequalities such as cover and partition inequali-
ties. We will also present item- and period-extended versions of some of these families
of inequalities, and we will establish facet-defining conditions for all families of in-
equalities. We will also discuss the separation problems associated with these valid
inequalities.
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