Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The effects of vanadium, niobium, titanium and zirconium on the microstructure and mechanical properties of thin slab cast steels

Li, Y. and Wilson, J.A. and Crowther, D. and Mitchell, P.S. and Baker, T.N. (2004) The effects of vanadium, niobium, titanium and zirconium on the microstructure and mechanical properties of thin slab cast steels. ISIJ International, 44 (6). pp. 1093-1102. ISSN 0915-1559

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The evolution of precipitation and microstructure during a simulation of the thin slab direct rolling process, in six vanadium based, low carbon, steels with V, V-N, V-Ti-N, V-Nb, V-Nb-Ti and V-Zr additions was studied by optical microscopy, analytical transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and parallel electron energy loss spectroscopy (PEELS). Tensile properties and Charpy vee-notch toughness of the final strip were also determined. The effects of microalloying additions and processing conditions, including equalisation temperature (1 200°C, 1 100°C and 1 050°C) and end water cool temperature, on the austenite and ferrite grain sizes, as well as the type and composition of the precipitates, were determined. The relationship between the microstructure and the properties in the steels was also ascertained.