Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A two-loop optimization strategy for multi-objective optimal experimental design

Yu, Hui and Yue, Hong and Halling, Peter (2016) A two-loop optimization strategy for multi-objective optimal experimental design. IFAC-PapersOnLine, 49 (7). pp. 803-808. ISSN 1474-6670

[img]
Preview
Text (Yu-etal-IFAC-2016-two-loop-optimization-strategy-for-multi-objective-optimal-experimental-design)
Yu_etal_IFAC_2016_two_loop_optimization_strategy_for_multi_objective_optimal_experimental_design.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (500kB) | Preview

Abstract

A new strategy of optimal experimental design (OED) is proposed for a kinetically controlled synthesis system by considering both observation design and input design. The observation design that combines sampling scheduling and measurement set selection is treated as a single optimization problem arranged in the inner loop, while the optimization of input intensity is calculated in the outer loop. This multi-objective dynamic optimization problem is solved via the integration of particle swarm algorithm (for the outer loop) and the interior-point method (for the inner loop). Numerical studies demonstrate the efficiency of this optimization strategy and show the effectiveness of this integrated OED in reducing parameter estimation uncertainties. In addition, process optimization of the case study enzyme reaction system is investigated with the aim to obtain maximum production rate by taking into account of the experimental cost.