Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Supermetric search with the four-point property

Connor, Richard and Vadicamo, Lucia and Cardillo, Franco Alberto and Rabitti, Fausto (2016) Supermetric search with the four-point property. In: 9th International Conference on Similiarty Search and Applications. Lecture Notes in Computing Science, 9939 . Springer-Verlag, pp. 51-64. ISBN 9783319467580

[img]
Preview
Text (Connor-etal-SISAP2016-Supermetric-search-with-the-four-point-property)
Connor_etal_SISAP2016_Supermetric_search_with_the_four_point_property.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Metric indexing research is concerned with the efficient evaluation of queries in metric spaces. In general, a large space of objects is arranged in such a way that, when a further object is presented as a query, those objects most similar to the query can be efficiently found. Most such mechanisms rely upon the triangle inequality property of the metric governing the space. The triangle inequality property is equivalent to a finite embedding property, which states that any three points of the space can be isometrically embedded in two-dimensional Euclidean space. In this paper, we examine a class of semimetric space which is finitely 4-embeddable in three-dimensional Euclidean space. In mathematics this property has been extensively studied and is generally known as the four-point property. All spaces with the four-point property are metric spaces, but they also have some stronger geometric guarantees. We coin the term supermetric as, in terms of metric search, they are significantly more tractable. We show some stronger geometric guarantees deriving from the four-point property which can be used in indexing to great effect, and show results for two of the SISAP benchmark searches that are substantially better than any previously published.