Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A finite volume method for solid mechanics incorporating rotational degrees of freedom

Pan, W. and Wheel, M. (2003) A finite volume method for solid mechanics incorporating rotational degrees of freedom. Computers and Structures, 81 (5). pp. 321-329. ISSN 0045-7949

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel finite volume (FV) based discretization method for determining displacement, strain and stress distributions in loaded two dimensional structures with complex geometries is presented. The method incorporates rotation variables in addition to the displacement degrees of freedom employed in earlier FV based structural analysis procedures and conventional displacement based finite element (FE) formulations. The method is used to predict the displacement fields in a number of test cases for which solutions are already available. The effect of mesh refinement upon the accuracy of the solutions predicted by the method is assessed. The results of this assessment indicate that the new method is more accurate than previous FV procedures incorporating displacement variables only, particularly in cases where bending is the predominant mode of deformation, and therefore the new method represents a significant advance in the development of this type of discretization procedure. Interestingly, the results of the accuracy assessment exercise also indicate that the new FV procedure is also more accurate than the equivalent FE formulation incorporating displacement and rotational degrees of freedom.