Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Existence of μ-representation of graphs

Kitaev, Sergey (2017) Existence of μ-representation of graphs. Journal of Graph Theory, 85 (3). pp. 661-668. ISSN 1097-0118

[img]
Preview
Text (Kitaev-JGT2016-Existence-of-μ-representation-of-graphs)
Kitaev_JGT2016_Existence_of_representation_of_graphs.pdf - Accepted Author Manuscript

Download (77kB) | Preview

Abstract

Recently, Jones et al. introduced the study of μ-representable graphs, where μ is a word over { 1,2} containing at least one 1. The notion of a μ-representable graph is a far-reaching generalization of the notion of a word-representable graph studied in the literature in a series of papers. Jones et al. have shown that any graph is 11⋯1-representable assuming that the number of 1s is at least three, while the class of 12-rerpesentable graphs is properly contained in the class of comparability graphs, which, in turn, is properly contained in the class of word-representable graphs corresponding to 11-representable graphs. Further studies in this direction were conducted by Nabawanda, who has shown, in particular, that the class of 112-representable graphs is not included in the class of word-representable graphs. Jones et al. raised a question on classification of μ-representable graphs at least for small values of μ. In this paper we show that if μ is of length at least 3 then any graph is μ-representable. This rather unexpected result shows that from existence of representation point of view there are only two interesting non-equivalent cases in the theory of μ-representable graphs, namely, those of μ=11 and μ=12.