Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Prototype reactor for scale-up of Si-N-O fibre production

Vital, A. and Vogt, U. and Graule, T. and Graehlert, W. and Leparoux, M. and Hopfe, V. and Ewing, H.C. and Daum, R. and Beil, A. (2001) Prototype reactor for scale-up of Si-N-O fibre production. In: 24th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings. Ceramic Engineering and Science Proceedings, 21 . John Wiley & Sons Inc., pp. 299-306. ISBN 9780470294635

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A mat of amorphous silicon oxynitride (Si-N-0) can be grown at 1723 K under flowing ammonia on a precursor powder mixture consisting of fine silica, silicon carbide and titanium particles spread on a SiC substrate plate. Single fibers sampled from the mat surface were found to possess outstanding high- performance properties with respect to chemical, mechanical as well as structural stability. The fibers are therefore promising candidates for use as reinforcement in CMC's for high-temperature applications. In the laboratory reactor, however, the production rate is a mere 3 g of fibers per batch run. In order to allow the manufacture of preforms and test bodies, an increase in the production rate to 50g of fibers per batch run was desired. This aim has been achieved by the scale-up of the laboratory furnace to a high-temperature prototype reactor.